PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EMG field analysis in dynamic microscopic/nanoscopic models of matter

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza pola EMG w mikro/nanoskopowych modelach materii
Języki publikacji
EN
Abstrakty
EN
We discuss a numerical model (macro/micro/nanoscopic) to enable more accurate analysis of electro-hydro-dynamic (EMHD) processes in water at the level of atoms. Dedicated experiments have shown that inserting a relatively homogeneous periodic structure (deionized, degassed, or distilled H2O) in a magnetic field will influence the atomic basis, molecules, and relevant bonds. In this context, the present paper focuses on the designing, analysis, and evaluation of the behavior of an extensive system that represents H2O from the microscopic perspective, and it also outlines the properties and changes of the bonds in the examined water samples. Complementarily, a simple example is used to define the results obtained from analyses of the generated spiral static gradient magnetic and non-stationary gradient electromagnetic fields from the frequency range of f = 1 GHz to 10 GHz.
PL
W artykule przedyskutowano (makro/mikro/nanoskopowy) model numeryczny przeznaczony do dokładniejszej analizy procesów elektrohydrodynamicznych (EMHD) w wodzie na poziomie atomowym. Przeprowadzone w tym celu eksperymenty wykazały, że wprowadzenie względnie jednorodnej struktury okresowej (dejonizowanej, odgazowanej lub destylowanej wody w polu magnetycznym wpłynie na strukturę atomową, molekuły i odpowiednie wiązania. W tym kontekście niniejszy artykuł koncentruje się na projektowaniu, analizie i ocenie zachowania rozległego systemu, który reprezentuje H2O z perspektywy mikroskopowej, a także nakreśla właściwości i zmiany wiązań w badanych próbkach wody. Dodatkowo, zastosowano prosty przykład służy do definiowania uzyskanych wyników na podstawie analizy statycznych, spiralnych statycznych gradientowych i niestacjonarnych gradientowych pól elektromagnetycznych w zakresie częstotliwości od 1 GHz do 10 GHz.
Rocznik
Strony
4--10
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • 1SIX Research Center, Department of Theoretical and Experimental Electrical Engineering, fialap@feec.vutbr.cz
  • Institute of Scientific Instruments of the ASCR v.v.i., bar@isibrno.cz
  • Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering , dedkova@feec.vutbr.cz
  • Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering , dohnalp@feec.vutbr.cz
Bibliografia
  • [1] ANSYS, Ansys Multiphysics Manuals, Ansys,(1994–2018), Houston, USA.
  • [2] Bakker H.J., Kropman M.F., Omta A.W.: Effect of ions on the structure and dynamics of liquid water. J. Phys. Condensed Matter 17/2005, 3215–3224.
  • [3] Bartušek K., Fiala P., Mikulka J.: Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System. Radioengineering 17(4)/2008, 113–118.
  • [4] Bartušek K., Gescheidtová E., Mikulka J.: Data Processing in Studying Biological Tissues, Using MR Imaging Techniques. 33 th International Conference on Telecommunications and Signal Processing. Budapešť: Asszisztenda Szervezo, 2010, 171–175.
  • [5] Bartušek K., Marcoň P., Fiala P., Máca J., Dohnal P.: The Effect of a Spiral Gradient Magnetic Field on the Ionic Conductivity of Water. Water 9(9)/2017, 1–8.
  • [6] Chaplin M.: http://www1.lsbu.ac.uk/water/water_structure_science.html.
  • [7] Chaplin M.F.: A proposal for the structuring of water. Biophysical Chemistry 83/1999, 211–221.
  • [8] Clary D.C.: Quantum dynamics in the smallest water droplet. Science 351/2016, 1267–1268.
  • [9] Cole W.T.S., Farrell J.D., Wales D.J., Saykally R.J.: Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm. Science 352/2016, 1194–1197.
  • [10] Drexler P., Fiala P.: Power supply sources based on resonant energy harvesting. Microsystem Technologies 18(7,8)/2012, 1181–1192.
  • [11] Drexler P., Kadlec R., Bartušek K., Fiala P., Kubásek R.: Magnetoinductive Lens for Experimental Mid- field MR Tomograph. In Proceedings of PIERS 2010 in Cambridge. Cambridge 2010, 1047–1050.
  • [12] Elia V., Marchettini N., Napoli E., Tiezzi E.: Nanostructures of Water Molecules in Iteratively Filtered Water. Water 7/2016, 147–157.
  • [13] Elia V., Niccoli M.: New physico-chemical properties of water induced by mechanical treatments. J. Therm. Anal. Calor. 61/2000, 527–537.
  • [14] Fiala P., Friedl M.: Application of an Electromagnetic Numerical Model in Accurate Measurement of High Velocities. IAPGOS 3/2015, 3–10.
  • [15] Fiala P., Jirků T., Gescheidtová E.: Tuned Structures for Special THz Applications. Proceedings of the Progress In Electromagnetics Research symposium. Cambridge The electromagnetics academy 2009, 151–155.
  • [16] Fiala P.: Pulse- powered virtual cathode oscillator. Transactions on Dielectrics and Electrical Insulation 18(4)/2011, 1046–1053.
  • [17] Frank H.S., Wen W.-Y.: Ion-solvent interaction. Structural aspects of ionsolvent interaction in aqueous solutions: a suggested picture of water structure. Faraday Discussions 24/1957, 133–140.
  • [18] Goncharuk V.V., Kavitskaya A.A., Romanyukina I.Y., Loboda O.A.: Revealing water’s secrets: deuterium depleted water. Chemistry Central Journal 7/2013, 103.
  • [19] Hansen T.C., Falenty A., Kuhs W.F.: Modelling ice Ic of different origin and stacking-faulted hexagonal ice using neutron powder diffraction data, in Physics and Chemistry of Ice, ed. W. Kuhs. Royal Society of Chemistry, Cambridge, 2007, 201–208.
  • [20] Ignatov I., Mosin O.: Structural Mathematical Models Describing Water Clusters. Mathematical Theory and Modeling 3(11)/2013.
  • [21] Ikeshoji T., Aihara T., Ohno K., Kawazoe Y.: Ab-initio Molecular Dynamics Simulation of Water Clusters. Sci. Rep. RITU A41/1996, 175–182.
  • [22] Kadlec R., Fiala P.: The Response of Layered Materials to EMG Waves from a Pulse Source. Progress In Electromagnetics Research M. 42/2015, 179–187.
  • [23] Krishnan M., Verma A., Balasubramanian S.: Proc. Indian Acad. Sci. (Chem. Sci.) 113(5,6)/2001, 579–590.
  • [24] Kuhs W.F., Sippel C., Falenty A., Hansen T.C.: Extent and relevance of stacking disorder in “ice Ic”. Proceedings of the National Academy of Sciences 109/2012, 21259–21264.
  • [25] Malkin T.L., Murray B.J., Brukhno A.V., Anwar J., Salzmann C.G.: Structure of ice crystallized from supercooled water. Proceedings of the National Academy of Sciences 109/2012, 1041–1045.
  • [26] Malkin T.L., Murray B.J., Salzmann C.G., Molinero V., Pickering S.J., Whale T.F.: Stacking disorder in ice I. Physical Chemistry Chemical Physics 17/2015, 60–76.
  • [27] Marcoň P., Bartušek K., Mikulka J., Čáp M.: Magnetic susceptibility modelling using ANSYS. Progress In Electromagnetics 2011, 190–193.
  • [28] Moore E.B., Molinero V.: Is it cubic? Ice crystallization from deeply supercooled water. Physical Chemistry Chemical Physics 13/2011, 20008–20016.
  • [29] Mootz D., Seidel R.: Polyhedral clathrate hydrates of a strong base: phase relations of crystal structures in the system tetramethylammonium hydroxidewater. J. Inclusion Phenomena 8/1990, 139–157.
  • [30] Muscia R.: Equivalent magnetic charge in helicoidal magnets. J. Appl. Phys. 104/2008, 103916.
  • [31] Ohmine I., Tanaka H.: Chem. Rev. 93/1993, 2545.
  • [32] Perera A., Mazighi R., Kežíc B.: Fluctuations and micro-heterogeneity in aqueous mixtures. Journal of Chemical Physics 136/2012, 174516.
  • [33] Perera A.: On the microscopic structure of liquid water. Molecular Physics 109/2011, 2433–2441.
  • [34] Rahman A., Stillinger F.H.: J. Chem. Phys. 55/1971, 3336.
  • [35] Richardson J.O., Pérez C., Lobsiger S., Reid A.A., Temelso B., Shields G.C., Kisiel Z., Wales D.J., Pate B.H., Althorpe S.C.: Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351/2016, 1310–1313.
  • [36] Shelton D.P.: Long-range orientation correlation in water. Journal of Chemical Physics 141/2014, 224506.
  • [37] Stratton J.A.: Electromagnetic field theory. SNTL, Praha 1961.
  • [38] Vlachová Hutová E., Bartušek K., Dohnal P., Fiala P.: The Influence of a Static Magnetic Field on the Behavior of a Quantum Mechanical Model of Matter. Measurement, Journal of the International Measurement Confederation (IMEKO) 96/2017, 18–23.
  • [39] Vostrikov A.A., Drozdov S.V., Rudnev V.S., Kurkina L.I.: Molecular dynamics study of neutral and charged water clusters. Computational Materials Science 35/2006, 254–260.
  • [40] Weisstein E.W.: Galerkin Method, MathWorld, 28 March 2015, http://mathworld.wolfram.com/GalerkinMethod.html. 1 April 2015.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9d6d3190-cb35-44bb-a3d8-508bc9759fee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.