PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Ground Response Curve (GRC) based on a damage model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie krzywej odpowiedzi gruntu (GRC) w oparciu o model pękania skał
Języki publikacji
EN
Abstrakty
EN
Analysis of stresses and displacements around underground openings is necessary in a wide variety of civil, petroleum and mining engineering problems. In addition, an excavation damaged zone (EDZ) is generally formed around underground openings as a result of high stress magnitudes even in the absence of blasting effects. The rock materials surrounding the underground excavations typically demonstrate nonlinear and irreversible mechanical response in particular under high in situ stress states. The dominant cause of irreversible deformations in brittle rocks is damage process. One of the most widely used methods in tunnel design is the convergence-confinement method (CCM) for its practical application. The elastic-plastic models are usually used in the convergence-confinement method as a constitutive model for rock behavior. The plastic models used to simulate the rock behavior, do not consider the important issues such as stiffness degradation and softening. Therefore, the use of damage constitutive models in the convergence-confinement method is essential in the design process of rock structures. In this paper, the basic concepts of continuum damage mechanics are outlined. Then a numerical stepwise procedure for a circular tunnel under hydrostatic stress field, with consideration of a damage model for rock mass has been implemented. The ground response curve and radius of excavation damage zone were calculated based on an isotropic damage model. The convergence-confinement method based on damage model can consider the effects of post-peak rock behavior on the ground response curve and excavation damage zone. The analysis of results show the important effect of brittleness parameter on the tunnel wall convergence, ground response curve and excavation damage radius.
PL
Analiza naprężeń i przemieszczeń powstałych wokół otworu podziemnego wymagana jest przy szerokiej gamie projektów z zakresu budownictwa lądowego, inżynierii górniczej oraz naftowej. Ponadto, wokół otworu podziemnego powstaje strefa naruszona działalnością górniczą wskutek oddziaływania wysokich naprężeń, nawet w przypadku gdy nie są prowadzone prace strzałowe. Reakcja materiału skalnego znajdującego się w otoczeniu wyrobisk podziemnych jest zazwyczaj procesem nieliniowym i nieodwracalnym, zwłaszcza w stanach wysokich naprężeń in situ. Główną przyczyną nieodwracalnych odkształceń skał kruchych jest pękanie. Jedną z najczęściej stosowanych metod w projektowaniu tuneli (wyrobisk podziemnych) jest metoda konwergencji i zamknięcia, popularna ze względu na zakres zastosowań. Metoda ta zazwyczaj wykorzystuje modele sprężysto- plastyczne, jako konstytutywne modele zachowania skał. Modele plastyczne wykorzystywane dotychczas do symulacji zachowania skał nie uwzględniają pewnych kluczowych aspektów, takich jak obniżenie sztywności czy rozmiękczanie. Dlatego też zastosowanie konstytutywnych modeli w metodzie konwergencji i zamknięcia jest sprawą kluczową przy projektach obejmujących struktury skalne. W pracy tej omówiono podstawowe założenia modelu continuum uszkodzeń i spękań. Zaimplementowano wielostopniową procedurę do badania tunelu o przekroju kolistym znajdującego się pod polem naprężeń hydrostatycznych, przy wykorzystaniu modelu pękania górotworu. Krzywą odpowiedzi gruntu oraz promień strefy naruszonej wybieraniem obliczono przy wykorzystaniu izotropowego modelu uszkodzeń. Metoda konwergencji i zamykania oparta na tym modelu uwzględnia zachowanie skał po wystąpieniu szczytowych naprężeń i powstaniu strefy naruszonej wybieraniem. Analiza wyników wykazała znaczny wpływ parametrów związanych z kruchością na konwergencję ścian wyrobiska, kształt krzywej odpowiedzi gruntu oraz promień strefy naruszonej wybieraniem.
Rocznik
Strony
655--672
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Iran, hamedavodi@aut.ac.ir
Bibliografia
  • Alonso E., Alejano L., Varas F., Fdez-Manin G., Carranza-Torres C., 2003. Ground reaction curves for rock massesexhibiting strain softening behavior. Int. J. Numer. Anal. Meth. Geomech. 27 (13), 1153-1185.
  • Brown E., Bray J., Landayi B., Hoek E., 1983. Ground response curves for rock tunnels. ASCEJ. Geotech. Eng. Div. 109 (1), 15-39.
  • Carol I., Rizzi E., Willam K., 2001. On the formulation of anisotropic elastic degradation. I. Theory based on a pseudologarithmicdamage tensor rate. Int. J. Solids and Structures 38, 491-518.
  • Carranza-Torres C., Fairhurst C., 1999. The elasto-plastic response of underground excavations in rock masses thatsatisfy the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci. 36 (6), 777-809.
  • Detournay E., 1986. Elastoplastic model of a deep tunnel for a rock with variable dilatancy. Rock Mech. Rock Engng. 19, 99-108.
  • Guan Z., Jiang Y., Tanabasi Y., 2007. Ground reaction analyses in conventional tunneling excavation. Tunnelling and Underground Space Technology 22, 230-237.
  • Jiang Y., Yoneda H., Tanabashi Y., 2001. Theoretical estimation of loosening pressure on tunnels in soft rocks. Tunnelling and Underground Space Technology 16 (2), 99-105.
  • Lee Y.K., Pietruszczak S., 2008. A new numerical procedure for elasto-plastic analysis of a circular opening excavatedin a strain-softening rock mass. Tunnelling and Underground Space Technology 23, 588-599.
  • Molladavoodi H., Mortazavi A., 2010. Development of a damage model for rock materials under compressive and tensilestress fields. Arch. Min. Sci., 55 (3), 637-668.
  • Molladavoodi H., Mortazavi A., 2011. A damage-based numerical analysis of brittle rocks failure mechanism. Finite Elements in Analysis and Design, 47, 991-1003.
  • Oreste P., Peila D., 1996. Radial passive rockbolting in tunnelling design with a new convergence confinement model. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 (5), 443-454.
  • Park K.H., Tontavanich B., Lee J.G., 2008. A simple procedure for ground curve of circular tunnel in elastic-strainsoftening rock masse. Tunnelling and Underground Space Technology, 23, 151-159.
  • Shao J.F., Chau K.T., Feng X.T., 2006. Modeling of anisotropic damage and creep deformation in brittle rocks. Int. J. Rock Mechanics & Mining Sciences. 43, 582-592.
  • Timoshenko S., Goodier J., Theory of Elasticity. McGraw-Hill, New York (1970).
  • Yazdani S., Schreyer H.L., 1988. An anisotropic damage model with dilation for concrete. Mechanics of Materials. 7, 231-244.
  • Zhu W.C., Tang A. 2004. Micromechanical model for simulating the fracture process of rock. Rock Mech. Rock Engng. 37(1), 25-56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cadc6f9-d869-48f8-bb02-7ffb4fbdc266
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.