PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Risk of power cables insulation failure due to the thermal effect of solar radiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ryzyko uszkodzenia cieplnego izolacji kabli elektroenergetycznych z powodu oddziaływania promieniowania słonecznego
Języki publikacji
EN
Abstrakty
EN
Low-voltage, as well as high-voltage power cable lines, are usually buried in the ground. The ampacity of the power cables in the ground mainly depends on the thermal resistivity of the soil, which may vary in a wide range. A common practice in power cable systems performance is to supply them from a pole of an overhead line. If so, a section of the line is located in free air and can be directly exposed to solar radiation. In some cases, the ampacity of power cables placed in free air is lower than in the ground. Differences in ampacities can be very high if thermal resistivity of the soil is very low, and simultaneously solar irradiation of cables in air occurs. This paper presents the risk of power cables overheating and in consequence the risk of their failure, when part of the underground power cable line is placed in free air. Temperature distribution of cables in the air (with and without solar radiation) for various load currents is presented. Thermal endurance of power cables insulation, operating with the overheating, is estimated.
PL
Linie kablowe zarówno niskiego, jak i wysokiego napięcia zwykle buduje się jako podziemne. Obciążalność kabli układanych w ziemi w znacznym stopniu zależy od rezystywności cieplej gruntu, a może się ona zmieniać w bardzo szerokim zakresie. Obecnie powszechną praktyką jest zasilanie linii kablowych z linii napowietrznych, co sprawia, że pewien odcinek linii kablowej znajduje się w powietrzu i może być poddany bezpośredniemu oddziaływaniu promieniowania słonecznego. W pewnych przypadkach obciążalność prądowa długotrwała kabli w powietrzu jest niższa niż w ziemi – różnice w tej obciążalności mogą być bardzo duże, jeżeli grunt ma niską rezystywność cieplną, a na odcinek linii w powietrzu oddziałuje promieniowanie słoneczne. W artykule przedstawiono problem przegrzania kabli elektroenergetycznych, gdy przyjęta obciążalność linii kablowej wynika z warunków dla ułożenia w ziemi, a na pewnym odcinku linia jest umieszczona w powietrzu. Przedstawiono rozkłady temperatury kabli w powietrzu (z uwzględnieniem i bez uwzględnienia promieniowania słonecznego) dla różnych prądów obciążenia kabli. Oszacowano trwałość termiczną izolacji kabli, mających przez znaczny przedział czasu temperaturę wyższą niż dopuszczalna długotrwale.
Rocznik
Strony
232--240
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology Faculty of Electrical and Control Engineering Narutowicza 11/12 str., 80-233 Gdańsk, Poland, stanislaw.czapp@pg.edu.pl
  • Gdańsk University of Technology Faculty of Electrical and Control Engineering Narutowicza 11/12 str., 80-233 Gdańsk, Poland, seweryn.szultka@pg.edu.pl
  • Gdańsk University of Technology Faculty of Electrical and Control Engineering Narutowicza 11/12 str., 80-233 Gdańsk, Poland, filip.ratkowski@pg.edu.pl
  • Polish Academy of Sciences Institute of Fluid Flow Machinery Fiszera 14 str., 80-231 Gdansk, Poland, atomaszewski@imp.gda.pl
Bibliografia
  • 1. Benato R, Paolucci A. EHV AC Undergrounding Electrical Power: Performance and Planning. Springer, 2010, https://doi.org/10.1007/978-1-84882-867-4.
  • 2. Brender D, Lindsey T L. Effect of rooftop exposure in direct sunlight on conduit ambient temperatures. IEEE Transactions on Industry Applications 2008; 44 (6): 1872-1878, https://doi.org/10.1109/TIA.2008.2006301.
  • 3. CYMCAP - software for power cable ampacity rating.
  • 4. Czapp S, Czapp M, Szultka S, Tomaszewski A. Ampacity of power cables exposed to solar radiation - recommendations of standards vs. CFD simulations. 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018), Międzyzdroje, Poland, 02-05.09.2018, E3S Web of Conferences 2018; 70 (03004):1-5, https://doi.org/10.1051/e3sconf/20187003004.
  • 5. Czapp S, Ratkowski F. Effect of soil moisture on current-carrying capacity of low-voltage power cables. Przeglad Elektrotechniczny 2019; 95 (6): 154-159, https://doi.org/10.15199/48.2019.06.29.
  • 6. Czapp S, Ratkowski F, Szultka S, Tomaszewski A. Overheating of underground power cable line due to its partial exposition to solar radiation. 24th International Conference on Methods and Models in Automation and Robotics (MMAR) 2019, Międzyzdroje, Poland, 26-29.08.2019: 396-400, https://doi.org/10.1109/MMAR.2019.8864691.
  • 7. Czapp S, Szultka S, Tomaszewski A. CFD-based evaluation of current-carrying capacity of power cables installed in free air. 18th International Scientific Conference on Electric Power Engineering (EPE) 2017, Kouty nad Desnou, Czech Republic, 17-19.05.2017: 692-697, https://doi.org/10.1109/EPE.2017.7967271.
  • 8. Czapp S, Szultka S, Tomaszewski A, Szultka A. Effect of solar radiation on current-carrying capacity of PVC-insulated power cables - the numerical point of view. Tehnicki Vjesnik 2019; 26 (6): 1821-1826, https://doi.org/10.17559/TV-20181029214825.
  • 9. De Leon F. Calculation of underground cable ampacity. CYME Int. TD 2005: 1-6.
  • 10. De Leon F. Major factors affecting cable ampacity. IEEE Power Engineering Society General Meeting 2006: 1-6, https://doi.org/10.1109/PES.2006.1708875.
  • 11. Gebura A, Kowalska D, Tokarski T. Badania przyśpieszonego starzenia przewodów elektrycznych. Research Works of Air Force Institute of Technology, 2003.
  • 12. HD 60364-5-52: Low-voltage electrical installations - Part 5-52: Selection and erection of electrical equipment - Wiring systems, 2011.
  • 13. Holyk C, Anders G J. Power cable rating calculations-A historical perspective. IEEE Industry Applications Magazine 2015; 21 (4): 6-64, https://doi.org/10.1109/MIAS.2015.2417094.
  • 14. IEC 60287-1-1: Electric cables - Calculation of the current rating - Part 1-1: Current rating equations (100% load factor) and calculation of losses - General, 2006.
  • 15. IEC 60287-2-1: Electric cables - Calculation of the current rating - Part 2-1: Thermal resistance - Calculation of the thermal resistance, 2015.
  • 16. IEC 60287-3-1: Electric cables - Calculation of the current rating - Part 3-1: Sections on operating conditions - Reference operating conditions and selection of cable type, 1999.
  • 17. Kacejko P, Kmak J, Nowak W, Pijarski P, Szpyra W, Tarko R, Wydra M. Dynamic management of transmission capacity in power systems. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 2017; 53: 107-110.
  • 18. Klimenta D, Perović B, Klimenta J, Jevtić M, Milovanović M, Krstić I. Modelling the thermal effect of solar radiation on the ampacity of a low voltage underground cable. International Journal of Thermal Sciences 2018; 134: 507-516, https://doi.org/10.1016/j.ijthermalsci.2018.08.012.
  • 19. Kornatka M. Analysis of the exploitation failure rate in Polish MV networks. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (3): 413-419, https://doi.org/10.17531/ein.2018.3.9.
  • 20. Kossowska-Cezak U. Zmiany wieloletnie liczby termicznych dni charakterystycznych w Warszawie (1951 - 2010). Prace Geograficzne 2014; 136: 9-30.
  • 21. Kuczmarski M. Usłonecznienie Polski i jego przydatność dla helioterapii, Dokumentacja Geograficzna 1990; 4.
  • 22. Instalacje elektryczne i teletechniczne. Poradnik montera i inżyniera elektryka (red. J. Strzałka). Rozdział: Zabezpieczenia w instalacjach elektrycznych. VERLAG DASHÖFER, Warszawa 2001-2019, ISBN 978-83-88285-11-0.
  • 23. Notton G, Voyant C, Fouilloy A, Duchaud J L, Nivet M L. Some applications of ANN to solar radiation estimation and forecasting for energy applications. Applied Sciences 2019; 209 (9): 1-20, https://doi.org/10.3390/app9010209.
  • 24. Olejnik B, Łowczowski K. Techniczne metody poprawy współczynników SAIDI oraz SAIFI stosowane w sieci dystrybucyjnej, Computer Applications in Electrical Engineering 2016, Poznan, Poland, 18-19.04.2016.
  • 25. Shabani H, Vahidi B. A probabilistic approach for optimal power cable ampacity computation by considering uncertainty of parameters and economic constraints, International Journal of Electrical Power and Energy Systems 2019; 106: 432-443, https://doi.org/10.1016/j. ijepes.2018.10.030.
  • 26. Spyra F. Wpływ czynników zewnętrznych na obciążalność prądową kabli w elektroenergetycznej linii kablowej. Energetyka 2007; 6-7: 451-454.
  • 27. Yang L, Qiu W, Huang J, Hao Y, Fu M, Hou S, Li L. Comparison of conductor-temperature calculations based on different radial-positiontemperature detections for high-voltage power cable. Energies 2018; 11 (1): 1-17, https://doi.org/10.3390/en11010117.
  • 28. Zawodniak J. Ageing processes in insulation of cable line and overhead cover conductor line. Automatyka, Elektryka, Zakłócenia 2018; 31 (1): 34-40, https://doi.org/10.17274/AEZ.2018.31.03.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c8ff15d-1ded-49c1-b3eb-9f98a8681aa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.