Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Combustion Engines

Tytuł artykułu

Biological activity of carbon nanoparticles produced in combustion process

Autorzy Kałużny, Jarosław  Idaszewska, Natalia  Runka, Tomasz  Piasecki, Adam  Nowicki, Marek  Merkisz, Jerzy 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In the recent years industrial applications of carbon allotropes such as carbon nanotubes (CNTs) and graphene have been tested extensively, thus justifying research on the environmental impact these materials have. In the current paper we compare EDS spectroscopy results of a cabin filter used in a car to a filter used in an air purifier inside a residential space. The contaminants adsorbed on the car-bon nanoparticles trapped in both types of filters allows for determining of their source of origin demonstrating clearly the dominant role of non-road emissions in Poland. Finally we present the experimental study on the growth of plants on substrates intentionally enriched with CNTs.
Słowa kluczowe
PL nanorurki węglowe   nanocząstki   środowisko  
EN carbon nanotubes   nanoparticles   environment  
Wydawca Polskie Towarzystwo Naukowe Silników Spalinowych
Czasopismo Combustion Engines
Rocznik 2019
Tom R. 58, nr 4
Strony 269--273
Opis fizyczny Bibliogr. 21 poz., fot. (w tym kolor.), wykr.
autor Kałużny, Jarosław
autor Idaszewska, Natalia
autor Runka, Tomasz
autor Piasecki, Adam
autor Nowicki, Marek
autor Merkisz, Jerzy
[1] MURR, L.E., BANG, J.J., ESQUIVEL, E.V. et al. Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. Journal of Nanoparticle Research. 2004, 6, 241-251.
[2] MURR, L.E., GUERRERO, P.A. Carbon nanotubes in wood soot. Atmospheric Science Letters. 2006, 7, 93-95.
[3] DIKIO, E.D. Morphological characterization of soot from the atmospheric combustion of diesel fuel. International Journal of Electrochemical Science. 2011, 6, 2214-2222.
[4] De VOLDER, M.F.L., TAWFICK, S.H., BAUGHMAN, R.H., HART, A.J. Carbon nanotubes: present and future commercial applications. Science. 2013, 339, 535-539.
[5] BAUGHMAN, R.H., ZAKHIDOV, A.A., DE HEER, W.A. Carbon nanotubes - the route toward applications. Science. 2002, 297, 787-792.
[6] KAŁUŻNY, J. et al. Lubricating performance of carbon nanotubes in internal combustion engines - engine tests results for CNT enriched oil. IJAT. 2017, 18(6).
[7] KAŁUŻNY, J., MERKISZ, J., KEMPA, K. et al. Friction reducing performance of carbon nanotubes covered pistons in internal combustion engines - engine test results. Combustion Engines. 2018, 172, 14-24.
[8] KOLOSNAJAJ-TABI, J. et al. Anthropogenic carbon nanotunes found in the airways of Parisian children. EBioMedicine. 2015, 2, 1697-1704.
[9] LAGALLY, C.D., REYNOLDS, C.C.O., GRIESHOP, A.P. et al. Carbon nanotube and fullerene emissions from spark-ignited engines. Aerosol Science and Technology. 2012, 46, 156-164.
[10] MANOJ, B., SREELAKSMI, S., MOHAN, A.N., KUNJOMANA, A.G. Characterization of diesel soot from the combustion in engine by x-ray and spectroscopic techniques. International Journal of Electrochemical Science. 2012, 7, 3215-3221.
[11] SWANSON, J., FEBO, R., BOIES, A., KITTELSON, D. Fuel sulfur and iron additives contribute to the formation of carbon nanotube-like structures in an internal combustion engine. Environmental Science & Technology Letters. 2016, 10, 364-368. DOI: 10.1021/acs.estlett.6b00313
[12] ALDAJAH, S., HAIK, Y., ELNAJJAR, E. A novel dual effect soot filtering system. Jordan Journal of Mechanical and Industrial Engineering. 2010, 4, 75-78.
[13] HAIK, Y. et al. US Patent 8,480,992 B2.
[14] CINKE, M., LI, J., CHEN, B. et al. Development of metal-impregnated single walled carbon nanotubes for toxic gas contaminant control in advanced life support systems. SAE Technical Paper 2003-01-2368. 2003. DOI: 10.4271/2003-01-2368.
[15] ZANELLO, L.P. et al. Bone cell proliferation on carbon nanotubes. Nano Letters. 2006, 6(3).
[16] LEPORE, E. et al. Spider silk reinforced by graphene or carbon nanotubes. 2D Mater. 2017, 4.
[17] KHODAKOVSKAYA, M. et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS nano. 2009, 3(10), 3221-3227.
[18] KHODAKOVSKAYA M.V., KIM, B.S., KIM, J.A. et al. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 2013, 9(1), 115-123. DOI: 10.1002/smll.201201225.
[19] ZAYTSEVA, O. Analysis of phytotoxicity and plant growth stimulation by multi-walled carbon nanotubes. 2017. []
[20] FALANA, H., NOFAL, W., NAKHLEH, H. A review article lepidium sativum (Garden cress). 2014
[21] ANDERS, A., KALINIEWICZ, Z., MARKOWSKI, P. Porównanie cech geometrycznych nasion pieprzycy siewnej (lepidium sativum l.) z okrywą oraz poddanych obłuskiwaniu. Acta Agrophysica. 2013, 20(1), 17-28.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-9b5d2491-2cb8-4b7c-ad62-8720ba4c847e
DOI 10.19206/CE-2019-445