Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on the effect of kinematic viscosity on electron-acoustic cylindrical and spherical solitary waves in a plasma with trapped electrons

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this article, using the standard reductive perturbation technique (RPT) to the basic governing equations for plasma comprising stationary ions, cold electrons and hot electrons abiding by vortex-like distribution, nonplanar Schamel Burger (NSB) equations is derived. In order to study the propagating properties of Electron acoustic (EA), progressive wave solution is obtained by employing the weighted residual method (WRM). Most of the observations of the EA wave are limited to the plasma environment where the effects of viscosity, collisions, ion streaming velocity are totally neglected. In our present observation, propagation of EA waves in a viscous plasma is described considering a weak damping (by adding a Burgers term) due to the inner particle collision and viscosity. Special attention has been given to study the impact of the other physical parameters in wave propagation in the framework of the Schamel Burgers medium.
Opis fizyczny
Bibliogr. 24 poz., rys.
  • Department of Mathematics, Cooch Behar Panchanan Barma University, Cooch Behar, 736101, India
  • Department of Mathematics, NIT Silchar, Assam, 788010, India
  • Department of Mathematics, Mathabhanga College, Coochbehar, 736146, India
  • Department of Mathematics, Alipurduar Univeristy, Alipurduar, 736121, India
  • [1] Sagdeev, Z.R. (1966). Reviews of Plasma Physics. vol 4 ed New York: Consultants Bureau.
  • [2] Ikezi, H., Taylor, R., & Baker, D. (1970). Formation and interaction of ion-acoustic solitions. Phys. Rev. Lett., 44 (11).
  • [3] Weinberg, S. (1972). Gravitation and Cosmology. New York: Wiley.
  • [4] Miller, R.H., & Witter, J.P. (1987). Active Galactic Nuclei, 202.
  • [5] D’Angelo, N. (1995). Coulomb solids and low-frequency fluctuations in RF dusty plasmas. J. Phys. D, 28, 1009.
  • [6] Dubouloz, N., Pottelette, R., Malingre, M., & Treumann, A.R. (1991). Generation of broadband electrostatic noise by electron acoustic solitons. Geophysical Research Letters, 18(2), 155-158.
  • [7] El-Monier, Y.S., & Atteya, A. (2020). Dynamics of ion-acoustic waves in nonrelativistic magnetized multi-ion quantum plasma: the role of trapped electrons. Waves in Random and Complex Media, 1-19.
  • [8] Gill, S.T., & Bansal, S. (2021). Collisionless damping of nonplanar dust acoustic waves due to dust charge fluctuation in nonextensive polarized plasma. Physica Scripta, 96(7), 075605.
  • [9] Tolba, E.R. (2021). Propagation of dust-acoustic nonlinear waves in a superthermal collisional magnetized dusty plasma. The European Physical Journal Plus, 136(1), 1-15.
  • [10] Mandi, L., Mondal, K.K., & Chatterjee, P. (2019). Analytical solitary wave solution of the dust ion acoustic waves for the damped forced modified Korteweg-de Vries equation in q-nonextensive plasmas. The European Physical Journal Special Topics, 228(12), 2753-2768.
  • [11] Mondal, K.K., Roy, A., Chatterjee, P., & Raut, S. (2020). Propagation of ion-acoustic solitary waves for damped forced Zakharov Kuznetsov equation in a relativistic rotating magnetized electron-positron-ion plasma. International Journal of Applied and Computational Mathematics, 6(3), 1-17.
  • [12] Raut, S., Mondal, K.K., Chatterjee, P., & Roy, A. (2021). Propagation of dust-ion-acoustic solitary waves for damped modified Kadomtsev-Petviashvili-Burgers equation in dusty plasma with a q-nonextensive nonthermal electron velocity distribution. SeMA, 1-23.
  • [13] Nishida, Y., Nagasawa, T., & Kawamata, S. (1978). Experimental verification of the characteristics of ion-acoustic cylindrical solitons. Phys. Lett., 69, 196-198.
  • [14] Pakzad, R.H. (2011). Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons. Astrophysics and Space Science, 331(1), 169-174.
  • [15] Demiray, H., & El-Zahar, R.E. (2018). Cylindrical and spherical solitary waves in an electronacoustic plasma with vortex electron distribution. Physics of Plasmas, 25(4), 10.1063/1.5021729.
  • [16] Demiray, H., & Bayindir, C. (2015). A note on the cylindrical solitary waves in an electronacoustic plasma with vortex electron distribution. Physics of Plasmas, 22(9), 092105.
  • [17] Demiray, H. (2020). Analytical solution for nonplanar waves in a plasma with q-nonextensive nonthermal velocity distribution: Weighted residual method. Chaos, Solitons & Fractals, 130, 109448.
  • [18] Demiray, H., El-Zahar, R.E., & Shan, S.A. (2020). On progressive wave solution for non-planar KDV equation in a plasma with q-nonextensive electrons and two oppositely charged ions. TWMS Journal of Applied and Engineering Mathematics, 10(2), 532-546.
  • [19] Rach, R., Wazwaz, M.A., & Duan, S.J. (2013). A reliable modification of the Adomian decomposition method for higher-order nonlinear differential equations. Kybernetes, 42(2), 282-308.
  • [20] Shukla, K.P. (2001). A survey of dusty plasma physics. Phys. Plasmas, 8, 1791-1803.
  • [21] Ebaid, A., Rach, R., & El-Zahar, E. (2017). A new analytical solution of the hyperbolic Kepler equation using the Adomian decomposition method. Acta Astronautica, 138, 1-9.
  • [22] Paul, A., Mandal, G., Amin, R.M., & Chatterjee, P. (2020). Analysis of solution of damped modified-KdV equation on dust-ion-acoustic wave in presence of superthermal electrons. Plasma Physics Reports, 46(1), 83-89.
  • [23] Mamun, A.A., & Shukla, K.P. (2002). Electrostatic solitary and shock structures in dusty plasmas. Physica Scripta, 98, 107.
  • [24] Schamel, H. (1972). Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Physics, 14(10), 905.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.