Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical guidelines on the properties of human healthy arteries in the design and fabrication of vascular grafts: experimental tests and quasi-linear viscoelastic model

Treść / Zawartość
Warianty tytułu
Języki publikacji
Knowledge of mechanical behavior of healthy human arteries as the guidelines to target properties of vascular grafts deserves special attention. There is a lack of mathematical model to characterize mechanical behavior of biomaterial while many mathematical models to reflect mechanics of human arteries have been proposed. The objective of this paper was set to measure mechanical properties of healthy human arteries including Common Carotid Artery (CCA), Abdominal Aorta Artery (AAA), Subclavian Artery (SA), Common Iliac Artery (CIA) and Right and Left Iliac Artery (RIA and LIA) and compare them to those of commercial ePTFE and Dacron®. Methods: Series of stress relaxation and strain to failure tests vere performed on all samples. The experimental data was utilized to develop quasi-linear viscoelastic (QLV) model of both natural and artificial arteries. Results: ePTFE is the stiffest sample, while the CCA is the most compliant one among all. RIA and CIA are more viscous than the other natural arteries, while AA and CCA are less viscous. The proposed model demonstrated an accurate fit to the experimental results, a proof of its ability to model both nonlinear elasticity and viscoelasticity of the human arteries and commercial ones. Conclusions: ePTFE and Dacron® are much stiffer than human arteries that may lead to the disruption of blood hemodynamic and may not be biomechanically feasible as a replacement.
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
  • Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
  • Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran,
  • Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
  • Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
  • [1] ABRAMOWITCH S.D., WOO S.L., An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory, J. Biomech. Eng., 2004, 126, 92–97.
  • [2] ASKARI F., SHAFIEIAN M., SOLOUK A., HASHEMI A., A comparison of the material properties of natural and synthetic vascular wall, J. Mech. Behav. Biomed. Mater., 2017, 71, 209–215.
  • [3] EBRAHIMI A.P., Mechanical properties of normal and diseased cerebrovascular system, J. Vasc. Interv. Neurol., 2009, 2, 155.
  • [4] FATURECHI R., HASHEMI A., FATOURAEE N., Do mechanical properties of human fetal membrane depend on strain rate?, J. Obstet. Gynaecol. Res., 2015, 41, 84–91.
  • [5] FUNG Y.C., Biomechanics: mechanical properties of living tissues, Springer Science and Business Media, 2013.
  • [6] FUNG Y.C., PERRONE N., ANLIKER M., Biomechanics, its foundations and objectives, Prentice-Hall, 1972.
  • [7] HASAN A., MEMIC A., ANNABI N., HOSSAIN M., PAUL A., DOKMECI M.R., DEHGHANI F., KHADEMHOSSEINI A., Electrospun scaffolds for tissue engineering of vascular grafts, Acta Biomater., 2014, 10, 11–25.
  • [8] HOLZAPFEL G.A., GASSER T.C., STADLER M., A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis, Eur. J. Mech. A. Solids., 2002, 21, 441–463.
  • [9] KAMENSKIY A.V., DZENIS Y.A., KAZMI S.A.J., PEMBERTON M.A., PIPINOS I.I., PHILLIPS N.Y., HERBER K., WOODFORD T., BOWEN R.E., LOMNETH C.S., Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arterie, Biomech. Model. Mechanobiol., 2014, 13, 1341–1359.
  • [10] MASE G.T., SMELSER R.E., MASE G.E., Continuum mechanics for engineers, CRC Press, 2009.
  • [11] MCKENNA K.A., HINDS M.T., SARAO R.C., WU P.C., MASLEN C.L., GLANVILLE R.W., BABCOCK D., GREGORY K.W., Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials, Acta Biomater., 2012, 8, 225–233.
  • [12] NEZARATI R.M., EIFERT M.B., DEMPSEY D.K., COSGRIFF-HERNANDEZ E., Electrospun vascular grafts with improved compliance matching to native vessels, J. Biomed. Mater. Res. B. Appl. Biomater., 2015, 103, 313–323.
  • [13] OSKUI I.Z., HASHEMI A., JAFARZADEH H., Biomechanical behavior of bovine periodontal ligament: experimental tests and constitutive model, J. Mech. Behav. Biomed. Mater., 2016, 62, 599–606.
  • [14] OSTDIEK A., IVEY J., GRANT D., GOPALDAS J., GRANT S., An in vivo study of a gold nanocomposite biomaterial for vascular repair, Biomaterials, 2015, 65, 175–183.
  • [15] PENA E., CALVO B., MARTINEZ M., DOBLARÉ M., An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects, Int. J. Solids. Struct., 2007, 44, 760–778.
  • [16] PEÑA J., MARTÍNEZ M., PEÑA E., A formulation to model the nonlinear viscoelastic properties of the vascular tissue, Acta. Mech., 2011, 217, 63–74.
  • [17] PERKTOLD K., LEUPRECHT A., PROSI M., BERK T., CZERNY M., TRUBEL W., SCHIMA H., Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses, Ann. Biomed. Eng., 2002, 30, 447–460.
  • [18] PIETRABISSA R., Biomateriali per protesi e organi artificiali: introduzione alla biocompatibilità, alla scienza e alla applicazione dei materiali per dispositivi biomedici, Patron, 1996.
  • [19] PIOLETTI D.P., RAKOTOMANANA L.R., On the independence of time and strain effects in the stress relaxation of ligaments and tendon, J. Biomech., 2000, 33, 1729–1732.
  • [20] PRESS W.H., The art of scientific computing, Cambridge University Press, 1992.
  • [21] SINGH C., WONG C.S., WANG X., Medical textiles as vascular implants and their success to mimic natural arteries, J. Funct. Biomater., 2015, 6, 500–525.
  • [22] STEKELENBURG M., RUTTEN M.C., SNOECKX L.H., BAAIJENS F.P., Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts, Tissue. Eng. Part A., 2008, 15, 1081–1089.
  • [23] SUGIURA T., AGARWAL R., TARA S., YI T., LEE Y.U., BREUER C.K., WEISS A.S., SHINOKA T., Tropoelastin inhibits intimal hyperplasia of mouse bioresorbable arterial vascular grafts, Acta Biomater., 2017, 52, 74–80.
  • [24] TANAKA T.T., FUNG Y.C., Elastic and inelastic properties of the canine aorta and their variation along the aortic tree, J. Biomech., 1974, 7, 357–370.
  • [25] TOMS S.R., DAKIN G.J., LEMONS J.E., EBERHARDT A.W., Quasi-linear viscoelastic behavior of the human periodontal ligament, J. Biomech., 2002, 35, 1411–1415.
  • [26] WILLS D., PICTON D., DAVIES W., An investigation of the viscoelastic properties of the periodontium in monkeys, J. Periodontal. Res., 1972, 7, 42–51.
  • [27] XIAO H., TAN I., BUTLIN M., LI D., AVOLIO A.P., Arterial viscoelasticity: role in the dependency of pulse wave velocity on heart rate in conduit arteries, Am. J. Physiol-Heart. C., 2017, 312, H1185–H1194.
  • [28] ZHOU J., FUNG Y.C, The degree of nonlinearity and anisotropy of blood vessel elasticity, P. Natl. A. Sci. USA., 1997, 94, 14255–14260.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.