PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel approach to the quantitative interpretation of petrophysical parameters using nano‑CT: example of Paleozoic carbonates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal was the analysis of parameters describing the structure of the pore space of carbonate rocks, based on tomographic images. The results of CT images interpretation, made for 17 samples of Paleozoic carbonate rocks were shown. The qualitative and quantitative analysis of a pore system was performed. Objects were clustered according to the pore size. Within the clusters, the geometry parameters were analysed. The following dependences were obtained for carbonate rocks, also for individual clusters (due to the volume): (1) a linear relationship (on a bilogarithmic scale) between the specific surface and the Feret diameter and (2) a strong linear relationship between specific surface area and Feret diameter and average diameter of the objects calculated for the sphere. The results were then combined with available results from standard laboratory tests, including NMR and MICP.
Czasopismo
Rocznik
Strony
1453--1461
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland, puskar@agh.edu.pl
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland
autor
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • 1. Akbar M, Petricola M, Watfa M, Badri M, Charara M, Boyd A, Grace M, Kenyon B, Roestenburg J (1995) Classic interpretation problems: evaluating carbonates. Oilfield Rev 7:38–57
  • 2. Amaefule JO, Altunbay M, Tiab D, Kersey DG, Keelan DK (1993) Enhanced reservoir description: using core and log data to identify hydraulic (Flow) units and predict permeability in uncored intervals/wells. In: SPE annual technical conference and exhibition, Houston (3–6 October), paper SPE-26436-MS. https://doi.org/10.2118/26436-ms
  • 3. Arns CH, Bauget F, Ghous A, Sakellarion A, Senden TJ, Sheppard AP, Sok RM, Pinczewski WV, Kelly JC, Knackstedt MA (2005) Digital core laboratory: petrophysical analysis from 3D imaging of reservoir core fragments. Petrophysics 46(4):260–277
  • 4. Coates GR, Xiao L, Prammer MG (1999) NMR logging principles & applications. Halliburton Energy Services, Houston
  • 5. Dohnalik M (2013) Improving the ability of determining reservoir rocks parameters using X-ray computed microtomography. Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland
  • 6. Exner U, Barnhoorn A, Baud P, Reuschlé T (2015) Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples. J Pet Sci Eng 127:270–285. https://doi.org/10.1016/j.petrol.2014.12.019
  • 7. Habrat M, Krakowska P, Puskarczyk E, Jędrychowski M, Madejski P (2017) The concept of a computer system for interpretation of tight rocks using X-ray computed tomography results: technical note. Stud Geotech Mech 39(1):101–107
  • 8. Jarzyna J, Puskarczyk E, Bała M, Papiernik B (2009) Variability of the Rotliegend sandstones in the Polish part of the Southern Permian Basin—per meability and porosity relationships. Ann Soc Geologorum Poloniae 79:13–26
  • 9. Jaworowski K, Mikołajewski Z (2007) Oil-and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin. Geol Rev 55(12/1):1017–1024
  • 10. Krakowska P, Puskarczyk E (2015) Tight reservoir properties derived by nuclear magnetic resonance, mercury porosimetry and computed microtomography laboratory techniques: case study of palaeozoic clastic rocks. Acta Geophys 63(3):789–814
  • 11. Krakowska P, Puskarczyk E, Jędrychowski M, Habrat M, Madejski P, Jarzyna J (2017) Analiza petrofizyczna łupków sylurskich z synklinorium lubelskiego—petrophysical analysis of Silurian shales from the Lublin. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN 101:293–301
  • 12. Mazzullo SJ, Chilingarian GV (1992) Diagenesis and origin of porosity. In: Chilingarian GV, Mazzullo SJ, Rieke HH (eds) Carbonate reservoir characterization: a geologic-engineering analysis Part I: Elsevier Publ. Co., Amsterdam, vol 30. Developments in Petroleum Science., pp 199–270
  • 13. Prasad M (2000) Velocity-permeability relations with hydraulic units. Geophysics 68:108–117
  • 14. Teles AP, Lima I, Lopes RT (2016) Rock porosity quantification by dual-energy X-ray computed microtomography. Micron 83:72–78
  • 15. Tiab D, Donaldson EC (2000) Petrophysics, theory and practice of measuring reservoir rock and fluid transport properties, 2nd edn. Elsevier, N.Y., p 899
  • 16. Wardlaw NC (1996) Factors affecting oil recovery from carbonate reservoirs and prediction of recovery. In: Chilingarian GV, Mazzullo SJ, Rieke HH (eds) Carbonate reservoir characterization: a geologic-engineering analysis, Part II, vol 44. Developments in petroleum science., pp 867–903
  • 17. Webb PA (2001a) Volume and density determinations for particle technologists. Micromeritics Instrument Corp., World Wide Web www.micromeritics.com. Accessed 22 May 2018
  • 18. Webb PA (2001b) An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data. Micromeritics Instrument Corp., World Wide Web www.micromeritics.com. Accessed 22 May 2018
  • 19. Wei X, Chen H, Zhang D, Dai R, Guo Y, Chen J, Ren J, Liu N, Luo S, Zhao J (2017) Gas exploration potential of tight carbonate reservoirs: a case study of Ordovician Majiagou formation in the eastern Yi-Shan slope, Ordos Basin, NW China. Pet Explor Dev 44(3):347–357
  • 20. Wennberg OP, Rennan L, Basquet R (2009) Computed tomography scan imaging of natural open fractures in a porous rock; geometry and fluid flow. Geophys Prospect 57(2):239–249
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99982a87-0d40-4404-9a02-2edfb0769c54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.