Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A child seat numerical model validation in the static and dynamic work conditions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Over last decade, road safety attracts increased attention of EU authorities. EU makers believe that new regulations forcing producers to fulfill extremely difficult safety requirement will help to diminish annual road fatalities. One of the latest of such ideas is standardization of side impact resistance of child seats. Since engineers cannot do anything else but to follow the regulations, number of projects aimed toward improvement of child seats side impact resistance has started. The problem is not easy and thus high-end engineering tools have to be used in the design process. One of such tools – a necessity, if one wants to truly understand structure behavior under dynamic working conditions – is numerical analysis of structures. The very basis of effective usage of this technique is reliable model of an analysis subject. This paper presents detailed information on numerical FE model of child seat and its validation based on test results. Effect of modeling techniques and dynamic material behavior on the obtained results is also discussed. Difficulties that arose during real life test are pointed and its influence on FE modeling is showed up.
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
  • Military University of Technology, 2 Gen. Kaliskiego Street, 00-908 Warsaw, Poland
  • Military University of Technology, 2 Gen. Kaliskiego Street, 00-908 Warsaw, Poland
  • Military University of Technology, 2 Gen. Kaliskiego Street, 00-908 Warsaw, Poland
  • Military University of Technology, 2 Gen. Kaliskiego Street, 00-908 Warsaw, Poland
  • Military University of Technology, 2 Gen. Kaliskiego Street, 00-908 Warsaw, Poland
  • [1] 2013.pdf.
  • [2] 0924_en.pdf.
  • [3] UNECE Regulation No. 44.
  • [4] B.R. Deshpande, T.J. Gunaselar, V. Gupta, S. Jayaraman, Development of MADYMO models of passenger vehicles for simulating side impact crashes. SAE Technical Paper Series 1999-01-2885, 1999
  • [5] S.W. Kirkpatrick, Development and validation of high fidelity vehicle crash simulation models, SAE Paper No. 2000-01-0627, 2000 CrwnVic.pdf.
  • [6] H.G. Donde, et al., Reduction in time to market of automotive seating system-using ls-dyna, in: Proceedings of the Infosys Technologies Limited, Electronics City, Bangalore, 2000.
  • [7] A. Kopczyński, M. Ptak, P. Harnatkiewicz, The influence of frontal protection system design on pedestrian passive safety, Archives of Civil and Mechanical Engineering 11 (2) (2011) 345– 364.
  • [8] M. Ptak, E. Rusiński, J. Karliński, S. Dragan, Evaluation of kinematics of SUV to pedestrian impact—lower leg impactor and dummy approach, Archives of Civil and Mechanical Engineering 12 (March (1)) (2012) 68–73.
  • [9] A.R. Burdi, et al., Infants and children in the adult world of automobile safety design: pediatric and anatomical considerations for design of child restraints, Journal of Biomechanics 2.3 (1969) 267–280. , 0021-9290(69)90083-9, pii:0021929069900839; ISSN: 0021-9290.
  • [10] C.A. Maurath, Development and validation of a finite element model of the Q3 anthropomorphic testing device. Tech. rep., 2008 =10041.
  • [11] E. Gunterberg, A. Johansson, Simulation and Analysis of Child Kinematics During Pre-Crash Maneuvers, Chalmers University of Technology, 2012 (Masters thesis) http://
  • [12] T. Belytschko, C.S. Tsai, Explicit algorithms for nonlinear dynamics of shells, in: ASME; AMD-48, 1981, 203–231.
  • [13] T. Belytschko, C.S. Tsay, J.I. Lin, Explicit algorithms for the nonlinear dynamics of shells, Computer Methods in Applied Mechanics and Engineering 42 (1984) 225–251.
  • [14] Y. Guo, Eight-node solid element for thick shell simulations, in: Proc. of 6th Int. LS-DYNA Conference, 2000.
  • [15] M. Chanda, S. Roy, Plastics Technology Handbook, Taylor and Francis Group, LLC, Boca Raton, Florida, USA, 2006. archives of civil and mechanical engineering 15 (2015) 361 – 375374.
  • [16] J.O. Hallquist, LS-DYNA Theory Manual, Livermore Software Technology Corp., Livermore, 2006.
  • [17] F. Huberth, S. Hiermaier, M. Neumann, Material models for polymers under crash loads, in: Proc. of 4th LS-Dyna Advenderforum, 2005 papers/forum05/material-models-for-polymers-under-crash- loads.
  • [18] P.E. Spencer, R. Spares, J. Sweeney, P.D. Coates, Modelling the large strain solid phase deformation behaviour of polymer nanoclay composites, Journal of Mechanical Time-Dependent Materials 12 (2008) 313–327.
  • [19] C. G'sell, J. JONAS, Determination of the plastic behaviour of solid polymers at constant true strain ratio, Journal of Materials Science 14 (1979) 583–591.
  • [20] M. Avalle, M. Peroni, A. Scattina, Mechanical models of the behaviour of plastic materials: influence of time and temperature, Latin American Journal of Solid and Structures 7 (2010) 41–61.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.