Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

What can we learn from the projections of changes of flow patterns? Results from Polish case studies

Warianty tytułu
Języki publikacji
River flow projections for two future time horizons and RCP 8.5 scenario, generated by two projects (CHASE-PL and CHIHE) in the Polish-Norwegian Research Programme, were compared. The projects employed different hydrological models over different spatial domains. The semi-distributed, process-based, SWAT model was used in the CHASE-PL project for the entire Vistula and Odra basins area, whilst the lumped, conceptual, HBV model was used in the CHIHE project for eight Polish catchments, for which the comparison study was made. Climate projections in both studies originated from the common EURO-CORDEX dataset, but they were different, e.g. due to different bias correction approaches. Increases in mean annual and seasonal flows were projected in both studies, yet the magnitudes of changes were largely different, in particular for the lowland catchments in the far future. The HBV-based increases were significantly higher in the latter case than the SWAT-based increases in all seasons except winter. Uncertainty in projections is high and creates a problem for practitioners.
Słowa kluczowe
Opis fizyczny
Bibliogr. 45 poz.
  • Department of Hydraulic Engineering, Warsaw University of Life SciencesSGGW, Warsaw, Poland,
  • Potsdam Institute for Climate Impact Research, Potsdam, Germany
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • Department of Hydraulic Engineering, Warsaw University of Life SciencesSGGW, Warsaw, Poland
  • Department of Hydraulic Engineering, Warsaw University of Life SciencesSGGW, Warsaw, Poland
  • Department of Hydraulic Engineering, Warsaw University of Life SciencesSGGW, Warsaw, Poland
  • Norwegian Meteorological Institute, Oslo, Norway
  • Potsdam Institute for Climate Impact Research, Potsdam, Germany
  • Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Poznań, Poland
  • 1. Addor N, Rössler O, Köplin N, Huss M, Weingartner R, Seibert J (2014) Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resour Res 50:7541–7562. doi:10.1002/2014WR015549
  • 2. Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48(3):317–337. doi:10.1623/hysj.48.3.317.45290
  • 3. Alfieri L, Burek P, Feyen L, Forzieri G (2015) Global warming increases the frequency of river floods in Europe. Hydrol Earth Syst Sci 19:2247–2260. doi:10.5194/hess-19-2247-2015
  • 4. Arnell NW (1992) Factors controlling the effects of climate change on river flow regimes in a humid temperate environment. J Hydrol 132(1):321–342. doi:10.1016/0022-1694(92)90184-W
  • 5. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment Part I: model development. JAWRA J Am Water Resour Assoc 34(1):73–89. doi:10.1111/j.1752-1688.1998.tb05961.x
  • 6. Benninga HJF, Booij MJ, Romanowicz RJ, Rientjes THM (2016) Performance of ensemble streamflow forecasts under varied hydrometeorological conditions. Earth Syst Sci Discuss, Hydrol. doi:10.5194/hess-2016-584
  • 7. Berezowski T, Szcześniak M, Kardel I, Michałowski R, Okruszko T, Mezghani A, Piniewski M (2016) CPLFD-GDPT5: high-resolution gridded daily precipitation and temperature data set for two largest Polish river basins. Earth Syst Sci Data 8(1):127–139. doi:10.5194/essd-8-127-2016
  • 8. Bergström, S., (1976), Development and application of a conceptual runoff model for Scandinavian catchments. SMHI report hydrology and oceanography, No RH07, Norrköping, Sweden
  • 9. Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highland Ranch, pp 443–476. ISBN 0-918334-91-8
  • 10. Dams J, Nossent J, Senbeta TB, Willems P, Batelaan O (2015) Multi-model approach to assess the impact of climate change on runoff. J Hydrol 529:1601–1616. doi:10.1016/j.jhydrol.2015.08.023
  • 11. Goodison BE, Louie PYT, Yang D (1998) WMO solid precipitation measurement intercomparison final report. Report no. 67, WMO/TD—No. 872. Source, available from: Accessed 31 Jan 2017
  • 12. Gosling SN, Taylor RG, Arnell NW, Todd MC (2011) A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol Earth Syst Sci 15(1):279–294. doi:10.5194/hess-15-279-2011
  • 13. Gosling SN, Zaherpour J, Mount NJ, Hattermann FF, Dankers R, Arheimer B, Breuer L, Ding J, Haddeland I, Kumar R, Kundu D, Liu J, van Griensven A, Veldkamp T, Vetter T, Wang X, Zhang X (2016) A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. Clim Change. doi:10.1007/s10584-016-1773-3
  • 14. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377(1–2):80–91. doi:10.1016/j.jhydrol.2009.08.003
  • 15. Gupta HV, Perrin C, Blöschl G, Montanari A, Kumar R, Clark M, Andréassian V (2014) Large-sample hydrology: a need to balance depth with breadth. Hydrol Earth Syst Sci 18(2):463–477. doi:10.5194/hess-18-463-2014
  • 16. Hamon WR (1961) Estimation of potential evapotranspiration. J Hydraul Div Am Soc Civil Eng 87(3):107–120
  • 17. Hattermann FF, Huang S, Burghoff O, Hoffmann P, Kundzewicz ZW (2016) An update of the article “Modelling flood damages under climate change conditions—a case study for Germany”. Nat Hazards Earth Syst Sci 16:1617–1622. doi:10.5194/nhess-16-1617-2016
  • 18. Hattermann FF, Krysanova V, Gosling SN, Dankers R, Daggupati P, Donnelly C, Flörke M, Huang S, Motovilov Y, Buda S, Yang T, Müller C, Leng G, Tang Q, Portmann FT, Hagemann S, Gerten D, Wada Y, Masaki Y, Alemayehu T, Satoh Y, Samaniego L (2017) Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Clim Chang. 141(3):561–576. doi:10.1007/s10584-016-1829-4
  • 19. Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction—the ISI-MIP approach. Earth Syst Dyn 4(2):219–236. doi:10.5194/esd-4-219-2013CrossRefGoogle Scholar
  • 20. Jacob D et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578. doi:10.1007/s10113-013-0499-2
  • 21. Jones RN, Chiew FHS, Boughton WC, Zhang L (2006) Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv Water Resour 29(10):1419–1429. doi:10.1016/j.advwatres.2005.11.001
  • 22. Karlsson IB, Sonnenborg TO, Refsgaard JC, Trolle D, Børgesen CD, Olesen JE, Jeppesen E, Jensen KH (2016) Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. J Hydrol 535:301–317. doi:10.1016/j.jhydrol.2016.01.069
  • 23. Krysanova V, Kundzewicz ZW, Piniewski M (2016) Assessment of climate change impact on water resources. In: Singh VP (ed) Handbook of applied hydrology. McGraw-Hill Education, New York
  • 24. Kundzewicz ZW, Krysanova V, Dankers R, Hirabayashi Y, Kanae S, Hattermann FF, Huang PCD, Milly M, Stoffel PPJ, Driessen P, Matczak P, Quevauviller P, Schellnhuber HJ (2017) Differences in flood hazard projections in Europe—their causes and consequences for decision making. Hydrol Sci J 62(1):1–14. doi:10.1080/02626667.2016.1241398
  • 25. Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydro 201(1):272–288. doi:10.1016/S0022-1694(97)00041-3
  • 26. Meresa H, Osuch M, Romanowicz R (2016) Hydro-meteorological drought projections into the 21-st century for selected Polish catchments. Water 8(5):206. doi:10.3390/w8050206
  • 27. Mezghani A, Dobler A, Haugen JH (2016) CHASE-PL climate projections: 5-km gridded daily precipitation & temperature dataset (CPLCP-GDPT5). Norwegian Meteorological Institute, Dataset. doi:10.4121/uuid:e940ec1a-71a0-449e-bbe3-29217f2ba31d
  • 28. Osuch M, Romanowicz RJ, Lawrence D, Wong WK (2016a) Trends in projections of standardized precipitation indices in a future climate in Poland. Hydrol Earth Syst Sci 20(5):1947–1969. doi:10.5194/hess-20-1947-2016
  • 29. Osuch M, Lawrence D, Meresa HK, Napiórkowski JJ, Romanowicz RJ (2016b) Projected changes in flood indices in selected catchments in Poland in the 21st century. Stoch Env Res Risk Assess. doi:10.1007/s00477-016-1296-5
  • 30. Osuch M, Romanowicz RJ, Wong WK (2017) Analysis of low flow indices under varying climatic conditions in Poland. Hydrol Res (in review)
  • 31. Papadimitriou LV, Koutroulis AG, Grillakis MG, Tsanis IK (2016) High-end climate change impact on European runoff and low flows–exploring the effects of forcing biases. Hydrol Earth Syst Sci 20:1785–1808. doi:10.5194/hess-20-1785-2016
  • 32. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1):187–192. doi:10.1007/s00704-009-0134-9
  • 33. Piniewski M (2017) Classification of natural flow regimes in Poland. River Res Appl. doi:10.1002/rra.3153
  • 34. Piniewski M, Voss F, Bärlund I, Okruszko T, Kundzewicz ZW (2013) Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrol Sci J 58(4):737–754. doi:10.1080/02626667.2013.778411
  • 35. Piniewski M, Mezghani A, Szcześniak M, Kundzewicz ZW (2017a) Regional projections of temperature and precipitation changes. Robustness and uncertainty aspects. Met Zeit 26(2):223–234. doi:10.1127/metz/2017/0813
  • 36. Piniewski M, Szcześniak M, Huang S, Kundzewicz ZW (2017b) Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model. Hydrol Res 48(3):nh2017280. doi:10.2166/nh.2017.280
  • 37. Piniewski M, Szcześniak M, Kardel I, Berezowski T, Okruszko T, Srinivasan R, Schuler DV, Kundzewicz ZW (2017c) Hydrological modelling of the Vistula and Odra river basins using SWAT. Hydrol Sci J 62(8):1266–1289. doi:10.1080/02626667.2017.1321842
  • 38. Rakovec O, Kumar R, Mai J, Cuntz M, Thober S, Zink M, Attinger S, Schäfer D, Schrön M, Samaniego L (2016) Multiscale and multivariate evaluation of water fluxes and states over European river basins. J Hydrometeorol 17(1):287–307. doi:10.1175/JHM-D-15-0054.1
  • 39. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmannniederschlagsmessers, Berichte des Deutschen Wetterdienstes 194. Offenbach, German
  • 40. Romanowicz R, Bogdanowicz JE, Debele SE, Doroszkiewicz J, Hisdal H, Lawrence D, Meresa HK, Napiórkowski JJ, Osuch M, Strupczewski WG, Wilson D, Wong WK (2016) Climate change impact on hydrological extremes: preliminary results from the Polish-Norwegian project. Acta Geophys 64(2):477–509. doi:10.1515/acgeo-2016-0009
  • 41. Roudier P, Andersson JCM, Donnelly C, Feyen L, Greuell W, Ludwig F (2016) Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Clim Change 135(2):341–355. doi:10.1007/s10584-015-1570-4
  • 42. Schewe J et al (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111(9):3245–3250. doi:10.1073/pnas.1222460110
  • 43. Tamm O, Luhamaa A, Tamm T (2016) Modeling future changes in the North-Estonian hydropower production by using. Hydrol Res 47(4):835–846. doi:10.2166/nh.2015.018
  • 44. Teutschbein C, Seibert J (2010) Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geogr Compass 4(7):834–860. doi:10.1111/j.1749-8198.2010.00357.x
  • 45. Vetter T, Huang S, Aich V, Yang T, Wang X, Krysanova V, Hattermann F (2015) Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst Dyn 6(1):17–43. doi:10.5194/esd-6-17-2015
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.