Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In machining applications predominantly for automated machining cells, tool life is often not used to its full extend and cutting tools are exchanged prematurely to avoid tool breakage and thus machine downtime or even damage at work piece or machine. Both effective process monitoring and adequate process control require reliable data from sensors and derived indicators that enable meaningful evaluation. Acceleration measurement by the instrumented tool holder provides signals with high quality from close to the cutting zone. Using the monitoring system, the gained data of the instrumented tool holder can be analyzed especially for the use case of unexpected tool wear, chipping of the cutting edge or breakouts at end mills. This paper describes the data analysis based on the rotational sensor and the corresponding effects on the measurement, an advanced assessment of the spectral distribution in the frequency domain and the experimental results of a test series.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
67--77
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- FT – Institute for Production Engineering and Photonic Technologies, TU Wien, Austria
autor
- FT – Institute for Production Engineering and Photonic Technologies, TU Wien, Austria
Bibliografia
- [1] GOETZ S., 2020, Process Monitoring in End Milling Using Polar Figures, J. Mach. Eng., 20/3, 95–105.
- [2] ZHANG X.Y., 2018, A Multi-Sensor Based Online Tool Condition Monitoring System for Milling Process, Procedia CIRP 72, 1136–1141.
- [3] UHLMANN E., LAGHMOUCHI A., GEISERT C., HOHWIELER E., 2017, Smart Wireless Sensor Network and Configuration of Algorithms for Condition Monitoring Applications, J. Mach. Eng., 17/2, 45–55.
- [4] BLEICHER F., SCHÖRGHOFER P., HABERSOHN C., 2018, In-Process Control with a Sensory Tool Holder to Avoid Chatter, J. Mach. Eng., 18/3, 16–27.
- [5] SCHÖRGHOFER P., PAUKER F, LEDER N., MANGLER J., RAMSAUER CH., BLEICHER F., 2019, Using Sensory Tool Holder Data for Optimizing Production Processes, J. Mach. Eng., 19/3, 43–55.
- [6] https://schunk.com/at_en/homepage/itendo/ (accessed 24 Sept 2020).
- [7] https://www.mytoolit.com/ICOtronic/ (accessed 24 Sept 2020).
- [8] JEMIELNIAK K., 2019, Contemporary Challenges in Tool Condition Monitoring, J. Mach. Eng., 19/1, 48–61.
- [9] BLEICHER F. 2020, Method for Determining Edge Chipping in Milling Based on Tool Holder Vibration Measurements, CIRP Annals, 69, 101–104.
- [10] AWREJCEWICZ J., 2012, Classical Mechanics – Kinematics and Statics, Springer.
- [11] JAIN S.R., 2016, Mechanics, Waves and Thermodynamics, Cambridge University Press, New York.
- [12] CHILDS D., 1993, Turbomachinery Rotordynamics – Phenomena Modeling and Analysis, John Wiley & Sons Inc., New York.
- [13] POWERS J.M., 2015, Mathematical Methods in Engineering, Cambridge University Press, Cambridge.
- [14] BEERENDS R.J., 2003, Fourier and Laplace Transforms, Cambridge University Press, Cambridge.
- [15] SCHMITZ T.L., 2019, Machining Dynamics – Frequency Response to Improved Productivity, Springer Nature Switzerland AG, Cham.
- [16] BALACHANDRAN B., 2001, Nonlinear Dynamics of Milling Processes, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 359/1781, 793–819.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96da055e-5730-4bd0-b68a-6f694a2856e4