Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal passive structural control under extreme earthquake excitations using a combined pendulum tuned mass damper

Treść / Zawartość
Warianty tytułu
Języki publikacji
Many engineering applications utilize passive Tuned Mass Dampers (TMDs) in several engineering applications because of their simplicity, readiness, and their ability in attenuating structural vibrations exposed to mild or extreme earthquake excitations. The main aim of this work is to find the optimum values of the system parameters after attaching a three degree of freedom Combined Pendulum Tuned Mass Damper (3-DOF CPTMD) to the main structure to investigate if the proposed solution will assist in reducing the amplitudę of the vibration. Three optimization search techniques are utilized, and the best optimum method is determined. Moreover, the structural system was modelled mathematically to get the governing motion equations, and the system was put into state-space format before being simulated using a homemade MATLAB© code. Additionally, it is found that the proposed 3-DOF CPTMD is very effective in dampening the structural vibrations under various earthquake excitations (including extreme conditions)
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
  • Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University Alexandria, Egypt
  • Department of Mechanical Engineering, École Centrale de Nantes Nantes, France
  • [1] Hadi, M.N., & Arfiadi, Y. (1998). Optimum design of absorber for MDOF structures. Journal of Structural Engineering, 124(11), 1272-1280.
  • [2] Xue, Q., Zhang, J., He, J., & Zhang, C. (2016). Control performance and robustness of pounding tuned mass damper for vibration reduction in SDOF structure. Shock and Vibration, 2016.
  • [3] Hoang, N., Fujino, Y., & Warnitchai, P. (2008). Optimal tuned mass damper for seismic applications and practical design formulas. Engineering Structures, 30(3), 707-715.
  • [4] Chen, Z., Fang, H., Han, Z., & Sun, S. (2019). Influence of bridge-based designed TMD on running trains. Journal of Vibration and Control, 25(1), 182-193.
  • [5] Lackner, M.A., & Rotea, M.A. (2011). Passive structural control of offshore wind turbines. Wind Energy, 14(3), 373-388.
  • [6] Longarini, N., & Zucca, M. (2014). A chimney’s seismic assessment by a tuned mass damper. Engineering Structures, 79, 290-296.
  • [7] Wang, W., Dalton, D., Hua, X., Wang, X., Chen, Z., & Song, G. (2017). Experimental study on vibration control of a submerged pipeline model by eddy current tuned mass damper. Applied Sciences, 7(10), 987.
  • [8] Yingling, A.J., & Agrawal, B.N. (2014). Applications of tuned mass dampers to improve performance of large space mirrors. Acta Astronautica, 94(1), 1-13.
  • [9] Yang, J.N., Agrawal, A.K., Samali, B., & Wu, J.-C. (2004). Benchmark problem for response control of wind-excited tall buildings. Journal of Engineering Mechanics, 130(4), 437-446.
  • [10] Rana, R., & Soong, T. (1998). Parametric study and simplified design of tuned mass dampers. Engineering Structures, 20(3), 193-204.
  • [11] Zuo, L., & Nayfeh, S.A. (2004). Minimax optimization of multi-degree-of-freedom tuned-mass dampers. Journal of Sound and Vibration, 272(3-5), 893-908.
  • [12] Pourzeynali, S., Lavasani, H., & Modarayi, A. (2007). Active control of high rise building structures using fuzzy logic and genetic algorithms. Engineering Structures, 29(3), 346-357.
  • [13] Hrovat, D., Barak, P., & Rabins, M. (1983). Semi-active versus passive or active tuned mass dampers for structural control. Journal of Engineering Mechanics, 109(3), 691-705.
  • [14] Symans, M.D., & Constantinou, M.C. (1999). Semi-active control systems for seismic protection of structures: a state-of-the-art review. Engineering Structures, 21(6), 469-487.
  • [15] Lazar, I., Neild, S., & Wagg, D. (2014). Using an inerter‐based device for structural vibration suppression. Earthquake Engineering & Structural Dynamics, 43(8), 1129-1147.
  • [16] Li, C. (2000). Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration. Earthquake Engineering & Structural Dynamics, 29(9), 1405-1421.
  • [17] Ata, A.A., & Kamel, A.G. (2019). Modelling and simulation of a combined pendulum tuned mass damper attached to a vibrating system. Proceedings of the 5th International Conference on Mechatronics and Robotics Engineering, 23-27.
  • [18] Ata, A.A., & Kamel, A. G. (2018). Numerical evaluation of the effect of combined pendulum tuned mass damper on a basic vibrating system. International Journal of Mechatronics and Applied Mechanics, (4), 270-279.
  • [19] Han, S.M., & Benaroya, H. (2002). Nonlinear and Stochastic Dynamics of Compliant Offshore Structures. (98). Springer Science & Business Media.
  • [20] Asad, S., Salahat, M., Zalata, M.A., Alia, M., & Al Rawashdeh, A. (2011). Design of fuzzy PD-controlled overhead crane system with anti-swing compensation. Journal of Engineering and Computer Innovations, 2(3), 51-58.
  • [21] Marian, L., & Giaralis, A. (2014). Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics, 38, 156-164.
  • [22] Takewaki, I. (2011). Preliminary report of the 2011 off the Pacific coast of Tohoku Earthquake. Journal of Zhejiang University-Science A, 12(5), 327-334.
  • [23] Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of the American Mathematical Society, 4(3), 502-506.
  • [24] Wilde, D.J. (1964). Optimum Seeking Methods. Prentice Hall.
  • [25] Brent, R.P. (1973). Algorithms for Minimization without Derivatives. Englewood Cliffs, New Jersey: Prentice-Hall.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.