Identyfikatory
Warianty tytułu
Uproszczony model dynamiczny wirującej belki
Języki publikacji
Abstrakty
In the paper a hybrid model of rotating beam is presented. It was obtained by using two methods: modal decomposition and spatial discretization. Reduced modal model was built for the system without the load related to inertia forces that occur during beam rotation. This inertia load was next modeled by using the method of simply spatial discretization and combined with reduced modal model. This approach allows to obtain accurate low-order model of rotating beam.
W artykule przedstawiono hybrydowy model wirującej belki. Otrzymano go stosując dwie metody: dekompozycji modalnej oraz dyskretyzacji przestrzennej. Zredukowany model modalny zbudowano dla układu bez obciążenia wynikającego z działania sił bezwładności występujących podczas ruchu belki. Oddziaływanie to uwzględniono stosując metodę dyskretyzacji przestrzennej. Takie podejście umożliwia otrzymanie dokładnego modelu niskiego rzędu wirującej belki.
Czasopismo
Rocznik
Tom
Strony
43--48
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Mechatronics, Gdansk University of Technology, Narutowicza Street11/12, 80-233 Gdansk, fax: (+48) 58 347 21 51
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Mechatronics, Gdansk University of Technology, Narutowicza Street11/12, 80-233 Gdansk
Bibliografia
- [2] Al-Said, S., Naji, M., and Al-Shukry, A.: Flexural Vibration of Rotating Cracked Timoshenko Beam, J. Vib. Control, Vol. 12, pp. 1271-1287, 2006.
- [3] Ansari M., Esmailzadeh, Jalili N.: Exact frequency analysis of a rotating cantilever beam with tip mass subjected to torsionalbending vibrations, Journal of Vibration and Acoustics, Vol. 133, 2011.
- [4] Barbosa E.G., Góes L.C.S.: Modeling and identification of flexible structure using bond graphs applied on flexcam quanser system, ABCM Symposium Series in Mechatronics, Vol. 3, pp. 129-138, 2008.
- [5] Bercin, A.N., Tanaka, M.: Coupled Flexural-Torsional Vibrations of Timoshenko Beams, J. Sound Vib., Vol. 207, pp. 47-59, 1997.
- [6] Furta, S. D.: Linear Vibrations of a Rotating Elastic Beam With an Attached Point Mass, J. Eng. Math., Vol. 46, pp. 165-188, 2003.
- [7] Gawroński W., Kruszewski J., Ostachowicz W., Tarnowski J., Wittbrodt E.: The finite element method in the dynamics of structures [in Polish], Arkady, Warsaw 1984.
- [8] Kruszewski J., Gawroński W., Wittbrodt E., Najbar F., Grabowski S.: The rigid finite element method [in Polish], Arkady, Warsaw 1975.
- [9] Lin S. M.: Dynamic Analysis of Rotating Nonuniform Timoshenko Beams with an Elastically Restrained Root, Journal of Applied Mechanics, Vol. 66, pp. 742-749, 1999.
- [10] Lin, S., Mao, I., and Lin, J., 2007, Vibration of a Rotating Smart Beam, AIAA J., 45 , pp. 382-389.
- [11] Orlikowski C.: Modelling, analysis and synthesis of dynamic systems by application of bond graphs. Gdańsk University of Technology Press, Gdańsk, 2005 [in Polish].
- [12] Orlikowski C., Hein R.: Modal reduction and analysis of gyroscopic systems. Solid State Phenomena 164 (2010) 189-194.
- [13] Orlikowski C., Hein R.: Reduced model of gyroscopic system, Selected Problems of Modal Analysis of Mechanical Systems, Editor T. Uhl, Radom: Publishing House of the Institute for Sustainable Technologies National Research Institute, 2009, AGH, Kraków 2007.
- [14] Orlikowski C., Hein R.: Modelling and analysis of rotor with magnetic bearing system, Developments in mechanical engineering, Editor J. T. Cieśliński, GUTP, Gdansk 2008.
- [15] Orlikowski C., Hein R.: Hybrid, approximate models of distributed-parameter systems. The 12th Mechatronics Forum Biennial International Conference. Part 2/2, Zurich, June 28-30, 2010 / H. Wild, K. Wegner. - Swiss Federal Institute of Technology, p. 163-170, 2010.
- [16] Rao S. S.: The finite element method in engineering, IV ed., Elsevier, 2005.
- [17] Sutton R.P., Halikias G.D., Plummer A.R, Wilson D.A.: Modelling and H∞ control of a single-link flexible manipulator, Proc Instn Mech Engrs, Vol. 213, Part I, pp. 85-104, 1999.
- [18] Turhan Ö., Bulut G.: On Nonlinear Vibrations of a Rotating Beam, J. Sound Vib., Vol. 322, pp. 314–335, 2009.
- [19] Yardimoglu B.: Vibration Analysis of Rotating Tapered Timoshenko Beams by a New Finite Element Model, Shock Vib., Vol. 13, pp. 117-126, 2006.
- [20] Yigit A., Scott R.A., Ulsoy A.G.: Flexural motion of a radially rotating beam attached to a rigid body, Jornal of Sound and Vibration, Vol. 121, No. 2, pp. 201-210.
- [21] Yuksel S., and Aksoy T. M.: Flexural Vibrations of a Rotating Beam Subjected to Different Base Excitations, Gazi University Journal of Science, Vol. 22, pp. 33-40, 2009.
- [22] Zhu W.D., Mote C.D.: Dynamic modeling and optimal control of rotating Euler-Bernoulli beams, Journal of Dynamic Systems, Measurement and Control, Vol. 119, pp. 802-808, 1997.
- [23] Zhu W.D.: Dynamical analysis and optimal control of a flexible robot arms, M.Sc. Thesis, Arizona State University, Tempe, AZ, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-948c11c5-3859-4794-8dab-2513b3080fcf