PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of trends and break points in temperature: the case of Umbria (Italy) and Guadalquivir Valley (Spain)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increase of air surface temperature at global scale is a fact with values around 0.85 °C since the late nineteen century. Nevertheless, the increase is not equally distributed all over the world, varying from one region to others. Thus, it becomes interesting to study the evolution of temperature indices for a certain area in order to analyse the existence of climatic trend in it. In this work, monthly temperature time series from two Mediterranean areas are used: the Umbria region in Italy, and the Guadalquivir Valley in southern Spain. For the available stations, six temperature indices (three annual and three monthly) of mean, average maximum and average minimum temperature have been obtained, and the existence of trends has been studied by applying the non-parametric Mann–Kendall test. Both regions show a general increase in all temperature indices, being the pattern of the trends clearer in Spain than in Italy. The Italian area is the only one at which some negative trends are detected. The presence of break points in the temperature series has been also studied by using the non-parametric Pettit test and the parametric standard normal homogeneity test (SNHT), most of which may be due to natural phenomena.
Czasopismo
Rocznik
Strony
329--343
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Área de Proyectos de Ingeniería, Departmento de Ingeniería RuralUniversidad de Córdoba Córdoba Spain
  • Área de Proyectos de Ingeniería, Departmento de Ingeniería RuralUniversidad de Córdoba Córdoba Spain, amanda.garcia@eco.es
  • Área de Proyectos de Ingeniería, Departmento de Ingeniería RuralUniversidad de Córdoba Córdoba Spain
autor
  • Área de Proyectos de Ingeniería, Departmento de Ingeniería RuralUniversidad de Córdoba Córdoba Spain
  • Department of Civil and Environmental EngineeringUniversity of Perugia Perugia Italy
  • Department of Civil and Environmental EngineeringUniversity of Perugia Perugia Italy
  • Área de Proyectos de Ingeniería, Departmento de Ingeniería RuralUniversidad de Córdoba Córdoba Spain
Bibliografia
  • 1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines in climate metadata and homogenization. WCDMP No. 53, WMO-TD No. 1186. WMO. Geneva. Switzerland
  • 2. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675
  • 3. Brunet M, Sigro J, Saladie O, Aguilar E, Jones P, Moberg A, Walther A, Lopez D (2005) Spatial patterns of long-term Spanish temperature change. Geophys Res Abstr 7:04007
  • 4. Brunet M, Saladie O, Jones PD, Sigro J, Aguilar E, Moberg A, Lister DH, Walther A, Lopez D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Int J Climatol 26:1777–1802
  • 5. Brunet M, Jones P, Sigro J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, Lopez D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117
  • 6. Brunetti M, Maugeri M, Nanni T (2000a) Variations of temperature and precipitation in Italy from 1866 to 1995. Theor Appl Climatol 65:165–174
  • 7. Brunetti M, Buffoni L, Maugeri M, Nanni T (2000b) Trends of minimum and maximum daily temperatures in Italy from 1865 to 1996. Theor Appl Climatol 66:49–60
  • 8. Brunetti M, Maugeri M, Monti F, Nannia T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381
  • 9. Caloiero T, Coscarelli R, Ferraric E, Sirangelod B (2017) Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. Int J Climatol. https://doi.org/10.1002/joc.5003
  • 10. del Río S, Herreo L, Pinto-Gomes C, Penas A (2011) Spatial analyses of mean temperature trends in Spain over the period 1961–2006. Glob Planet Change 78:65–75
  • 11. del Río S, Cano-Ortiz A, Herrero L, Penas A (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109:605–626
  • 12. Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods in low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105
  • 13. Feidas H (2016) Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: recent trends and an update to 2013. Theor Appl Climat. https://doi.org/10.1007/s00704-016-1854-2
  • 14. Gonzalez-Hidalgo JC, Peña-Angulo D, Brunetti M, Cortesi C (2015) MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951–2010). Int J Climatol 35:4444–4463
  • 15. Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363
  • 16. Hu Y, Maskey S, Uhlenbrook S (2012) Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim Change 110:403–429
  • 17. IPCC (2014) Climate change 2014: synthesis report. Fifth Assessment report, Ginebra, Suiza
  • 18. Jung IW, Baeand DH, Kim G (2011) Recent trends of mean and extreme precipitation in Korea. Int J Climatol 31:359–370
  • 19. Kahya E, Kalayci S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144
  • 20. Kendall MG (1975) Rank correlation methods. Ed, Charles Griffin, London
  • 21. Khaliq MN, Ouarda TBMJ (2007) Short Communication on the critical values of the standard normal homogeneity test (SNHT). Int J Climatol 27:681–687
  • 22. Klok EJ, Klein-Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191
  • 23. Llorente M (2012) Tendencias españolas de variables agrometeorológicas en los últimos 30 años. Departamento de Producción Vegetal, Universidad Politécnica de Madrid, ETSIA, p 99
  • 24. Mann HB (1945) Non parametric test against trend. Econometrica 13:245–259
  • 25. Martínez MD, Serra C, Burgueño A, Lana X (2010) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004. Int J Climatol 30:267–290
  • 26. Morales CG, Ortega MT, Labajo JL, Piorno A (2005) Recent trends and temporal behavior of thermal variables in the region of Castilla–Leon (Spain). Atmosfera 18:71–90G
  • 27. Morozova AL, Valente MA (2012) Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto. Earth Syst Sci Data 4:187–213
  • 28. Pandžić K, Likso T (2010) Homogeneity of average air temperature time series for Croatia. Int J Climatol 30:1215–1225
  • 29. Pettit AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135
  • 30. Piccarreta M, Lazzari M, Pasini A (2015) Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int J Climatol 35:1964–1975
  • 31. Rougé C, Ge Y, Cai X (2013) Detecting gradual abrupt changes in hydrological records. Adv Water Resour 53:33–44
  • 32. Shadmani M, Marofiand S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s Rho tests in Arid Regions of Iran. Water Resour Manage 26:211–224
  • 33. Sousa A, García-Barrón L, Jurado V (2007) Climate change in Andalusia: trends and environmental consecuences. Consejería de Medio Ambiente. Junta de Andalucía
  • 34. Tank AMGK, Könnem GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680
  • 35. Tomozeiu R, Pavan V, Cacciamani C, Amici M (2006) Observed temperature changes in Emilia-Romagna: mean values and extremes. Clim Res 31(2–3):217–225
  • 36. Viola F, Liuzzo L, Noto LV, Lo Conti F, La Loggia G (2014) Spatial distribution of temperature trends in Sicily. Int J Climatol 34:1–17
  • 37. Wijngaard JB, Klein Tank AMG, Konnen GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692
  • 38. Yu YS, Zou S, Whittemore D (1993) Nonparametric trend analysis of water quality data of rivers in Kansas. J Hydrol 150:61–80
  • 39. Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Processes 16:1807–1829
Uwagi
Wśród listy autorów artykułu błąd w nazwisku jednego z nich. Poprawna pisownia to Alessia Flammini.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93aceace-401c-4239-88b6-f00347516bff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.