Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Outage Performance of Bidirectional Full-Duplex Amplify-and-Forward Relay Network with Transmit Antenna Selection and Maximal Ratio Combining

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper, a bidirectional full-duplex amplify- and-forward (AF) relay network with multiple antennas at source nodes is proposed. Assuming that the channel state information is known at the source nodes, transmit antenna selection and maximal ratio combining (MRC) are employed when source nodes transmit information to the relay node and receive information from the relay node respectively, in order to improve the overall signal-to-interference plus noise ratio (SINR). Analytical expressions are derived for tight upper bound SINR at the relay node and source nodes upon reception. Further, losed form expressions are also derived for end-to-end outage probability of the proposed bidirectional full-duplex AF relay network in the Nakagami-m fading channel environment. Although self-interference at the relay node limits the performance of the full-duplex network, the outage performance of the proposed network is better than that of conventional bidirectional full-duplex and half-duplex AF relay networks, due to the selection diversity gain in TAS and diversity and array gain in MRC.
Opis fizyczny
Bibliogr. 30 poz., rys.
  • School of Electronics Engineering, VIT University, Vellore, India
  • Thiagarajar College of Engineering Madurai, India
  • Thiagarajar College of Engineering Madurai, India
  • School of Electronics Engineering, VIT University, Vellore, India
  • [1] P. Popovski and H. Yomo, “Bi-directional amplification of throughput in a wireless multi-hop network”, in Proc. IEEE 63rd Veh. Technol. Conf. VTC2006-Spring, Melbourne, Australia, 2006, vol. 2, pp. 588–593 (doi: 10.1109/VETECS.2006.1682892).
  • [2] R. Vaze and R. W. Heath, “On the capacity and diversitymultiplexing tradeoff of the two-way relay channel”, IEEE Trans. on Inform. Theory, vol. 57, no. 7, pp. 4219–4234, 2011.
  • [3] X. Cheng et al., “Communicating in the real world: 3D MIMO”, IEEE Wirel. Commun., vol. 21, no. 4, pp. 136–144, 2014.
  • [4] D. Bharadia, E. McMilin, and S. Katti, “Full-duplex radios”, ACM SIGCOMM Comp. Commun. Rev., vol. 43, no. 4, pp. 375–386, 2013.
  • [5] V. Genc, S. Murphy, Y. Yu, and J. Murphy, “IEEE 802.16j relaybased wireless access networks: an overview”, IEEE Wirel. Commun., vol. 15, no. 5, pp. 56–63, 2008.
  • [6] Y. Yuan, LTE-Advanced Relay Technology and Standardization. Springer, 2012.
  • [7] H. Cui, M. Ma, L. Song, and B. Jiao “Relay selection for twoway full-duplex relay networks with amplify-and-forward protocol”, IEEE Trans. on Wirel. Commun., vol. 13, no. 7, pp. 3768–3777, 2014.
  • [8] S. C. Liew, S. Zhang, and L. Lu, “Physical-layer network coding: Tutorial, survey, and beyond”, Phys. Commun., vol. 6, pp. 4–42, 2013 (doi: 10.1016/j.phycom.2012.05.002).
  • [9] S. Hong et al., “Applications of self-interference cancellation in 5G and beyond”, IEEE Commun. Mag., vol. 52, no. 2, pp. 114–121, 2014.
  • [10] D. S. Michalopoulos, H. A. Suraweera, G. K. Karagiannidis, and R. Schober, “Amplify-and-forward relay selection with outdated channel estimates”, IEEE Trans. on Commun., vol. 60, no. 5, pp. 1278–1290, 2012.
  • [11] S. Won and L. Hanzo, “Synchronization issues in relay-aided cooperative MIMO networks”, IEEE Wirel. Commun., vol. 21, no. 5, pp. 41–55, 2014.
  • [12] C.-L. Wang, P.-C. Chiu, and H.-C. Wang, “Joint time synchronization and channel estimation for two-way amplify-and-forward relay systems”, in Proc. IEEE Global Commun. Conf. GLOBECOM 2014, Austin, TX, USA, 2014, pp. 3543–3548, 2014.
  • [13] J. M. Moualeu, W. Hamouda, and F. Takawira, “Relay selection for coded cooperative networks with outdated CSI over Nakagami-m fading channels”, IEEE Trans. on Wirel. Commun., vol. 13, no. 5, pp. 2362–2373, 2014.
  • [14] Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection”, IEEE Commun. Mag., vol. 53, no. 5, pp. 128–137, 2015.
  • [15] K. Song, B. Ji, Y. Huang, M. Xiao, and L. Yang, “Performance analysis of antenna selection in two-way relay networks”, IEEE Trans. on Sig. Process., vol. 62, no. 10, pp. 2520–2532, 2015.
  • [16] J. Yang, P. Fan, T. Q. Duong, and X. Lei“ “Exact performance of two-way af relaying in Nakagami-m fading environment”, IEEE Trans. on Wirel. Commun., vol. 10, no. 3, pp. 980–987, 2011.
  • [17] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems”, IEEE Commun. Mag., vol. 42, no. 10, pp. 68–73, 2004.
  • [18] S. W. Peters and R. W. Heath Jr, “Nonregenerative MIMO relaying with optimal transmit antenna selection”, IEEE Sig. Process. Lett., vol. 15, pp. 421–424, 2008.
  • [19] H. A. Suraweera, P. J. Smith, A. Nallanathan, and J. S. Thompson, “Amplify-and-forward relaying with optimal and suboptimal transmit antenna selection”, IEEE Trans. on Wirel. Commun., vol. 10, no. 6, pp. 1874–1885, 2011.
  • [20] G. Zhang, W. Zhan, and J. Qin, “Transmit antenna selection in the alamouti-coded MIMO relay systems”, Wirel. Personal Commun., vol. 62, no. 4, pp. 879–891, 2012.
  • [21] M. Ding, S. Liu, H. Luo, and W. Chen, “MMSE based greedy antenna selection scheme for AF MIMO relay systems”, IEEE Sig. Process. Lett., vol. 17, no. 5, pp. 433–436, 2010.
  • [22] K. Yang, N. Yang, C. Xing, and J. Wu, “Relay antenna selection in MIMO two-way relay networks over Nakagami-m fading channels”, IEEE Trans. on Vehicular Technol., vol. 63, no. 5, pp. 2349–2362, 2014.
  • [23] S. Chen, W. Wang, X. Zhang, and D. Zhao, “Performance of amplify-and-forward MIMO relay channels with transmit antenna selection and maximal-ratio combining”, in IEEE Wirel. Commun. & Netw. Conf. WCNC 2009, Budapest, Hungary, 2009, pp. 808–813.
  • [24] A. Yılmaz and O. Kucur, “Performance of transmit antenna selection and maximal-ratio combining in dual hop amplify-and-forward relay network over Nakagami-m fading channels”, Wirel. Personal Commun., vol. 67, no. 3, pp. 485–503, 2012.
  • [25] H. A. Suraweera, G. K. Karagiannidis, Y. Li, H. K. Garg, A. Nallanathan, and B. Vucetic, “Amplify-and-forward relay transmission with end-to-end antenna selection”, in IEEE Wirel. Commun. & Netw. Conf. WCNC 2010, Sydney, Australia, 2010, pp. 1–6.
  • [26] R. H. Louie, Y. Li, and B. Vucetic, “Performance analysis of beamforming in two hop amplify and forward relay networks”, in Proc. IEEE Int. Conf. on Commun. ICC 2008, Beijing, China, 2008, pp. 4311–4315.
  • [27] H. A. Suraweera, I. Krikidis, and C. Yuen, “Antenna selection in the full-duplex multi-antenna relay channel”, in Proc. IEEE Int. Conf. on Commun. ICC 2013, Budapest, Hungary, 2013, pp. 4823–4828.
  • [28] X. Jin, J.-S. No, and D.-J. Shin, “Source transmit antenna selection for MIMO decode-and-forward relay networks”, IEEE Trans. on Sig. Process., vol. 61, no. 7, pp. 1657–1662, 2013.
  • [29] E. Li, S. Yang, and H. Wu, “A source-relay selection scheme in twoway amplify-and-forward relaying networks”, IEEE Commun. Lett., vol. 16, no. 10, pp. 1564–1567, 2012.
  • [30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Academic Press, 2014.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.