Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The transmission characteristics for 85Rb and 87Rb laser-induced dichroism atomic filters operating on rubidium D1 lines (795 nm) transitions are analyzed. By means of semiclassical density matrix equations of motion, a three-level model for the transmission characteristics of the ground state laser-induced dichroism atomic filter is presented. Calculative results show that this filter, using two counterpropagating pump and probe beams, can obtain higher transmission, narrower bandwidth and larger tuning capability than that using two copropagating pump and probe beams; with the aid of counterpropagating pump, the 85Rb ground state laser-induced dichroism atomic filter can be more effective to achieve higher peak transmission (>34%) and larger tunability (>1 GHz) than the 87Rb ground state laser-induced dichroism atomic filter in the same operation parameters. This result may be helpful for improving peak transmission (14.6%) of Rb ground state laser-induced dichroism atomic filter reported (CERÈ A. et al., Opt. Lett. 34(7), 2009, pp. 1012–1014).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
55--67
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007, China
autor
- College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007, China
Bibliografia
- [1] TANG JUNXIONG, WANG QINGJI, LI YIMIN, ZHANG LIANG, GAN JIANHUA, DUAN MINGHAO, KONG JIANKUN, ZHENG LEMIN, Experimental study of a model digital space optical communication system with new quantum devices, Applied Optics 34(15), 1995, pp. 2619–2622.
- [2] SHAN XIN, SUN XIANPING, LUO JUN, TAN ZHENG, ZHAN MINGSHENG, Free-space quantum key distribution with Rb vapor filters, Applied Physics Letters 89(19), 2006, article 191121.
- [3] POPESCU A., WALLDORF D., SCHORSTEIN K., WALTHER T., On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system, Optics Communications 264(2), 2006, pp. 475–481.
- [4] ÖHMAN Y., On some new auxiliary instruments in astrophysical research. VI. A tentative monochromator for solar work based on the principle of selective magnetic ratation, Stockholms Observatoriums Annaler 19(4), 1956, pp. 9–11.
- [5] YEH P., Dispersive magnetooptic filters, Applied Optics 21(11), 1982, pp. 2069–2075.
- [6] YIN B., SHAY T.M., Theoretical model for a Faraday anomalous dispersion optical filter, Optics Letters 16(20), 1991, pp. 1617–1619.
- [7] DICK D.J., SHAY T.M., Ultrahigh-noise rejection optical filter, Optics Letters 16(11), 1991, pp. 867–869.
- [8] ZHILIN HU, XIANPING SUN, YIPING LIU, LIPING FU, XIZHI ZENG, Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line, Optics Communications 156(4–6), 1998, pp. 289–293
- [9] CHEN H., SEARCY P., KOREVAAR E., SHE C.Y., Sodium-vapor dispersive Faraday filter, Optics Letters 18(12), 1993, pp. 1019–1021.
- [10] YUNDONG ZHANG, XIAOLING JIA, ZUGUANG MA, QI WANG, Potassium Faraday optical filter in line--center operation, Optics Communications 194(1–3), 2001, pp. 147–150.
- [11] YUNDONG ZHANG, XIAOLING JIA, ZUGUANG MA, QI WANG, Optical filtering characteristic of potassium Faraday optical filter, IEEE Journal of Quantum Electronics 37(3), 2001, pp. 372–375.
- [12] PENG YU-FENG, TANG JUN-XIONG, WANG QING-JI, Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines, Acta Physica Sinica (Overseas Edition) 2(1), 1993, pp. 1–8.
- [13] MENDERS J., BENSON K., BLOOM S.H., LIU C.S., KOREVAAR E., Ultranarrow line filtering using a Cs Faraday filter at 852 nm, Optics Letters 16(11), 1991, pp. 846–848.
- [14] BILLMERS R.I., ALLOCCA D.M., GAYEN S.K., SQUICCIARINI M.F., CONTARINO V.M., SCHARPF W.J., Experimental demonstration of an excited-state Faraday filter operating at 532 nm, Optics Letters 20(1), 1995, pp. 106–108.
- [15] LIANG ZHANG, JUNXIONG TANG, Experimental study on optimization of the working conditions of excited state Faraday filter, Optics Communications 152(4–6), 1998, pp. 275–279.
- [16] TURNER L.D., KARAGANOV V., TEUBNER P.J.O., SCHOLTEN R.E., Sub-Doppler bandwidth atomic optical filter, Optics Letters 27(7), 2002, pp. 500–502.
- [17] HE ZHUSONG, ZHANG YUNDONG, LIU SHUANGQIANG, YUAN PING, Transmission characteristics of an excited-state induced dispersion optical filter of rubidium at 775.9 nm, Chinese Optics Letters 5(5), 2007, pp. 252–254.
- [18] CERÈ A., PARIGI V., ABAD M., WOLFGRAMM F., PREDOJEVIC A., MITCHELL M.W., Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor, Optics Letters 34(7), 2009, pp. 1012–1014.
- [19] SHUANGQIANG LIU, YUNDONG ZHANG, HAO WU, PING YUAN, Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption, Optics Communications 285(6), 2012, pp. 1181–1184.
- [20] SUOMINEN K.-A., STENHOLM S., STÅHLBERG B., Laser-induced dispersion in a three-level system, Journal of the Optical Society of America B 8(9), 1991, pp. 1899–1906.
- [21] YUFENG PENG, WENJIN ZHANG, LIANG ZHANG, JUNXIONG TANG, Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm, Optics Communications 282(2), 2009, pp. 236–241.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92e7b41c-8424-44bc-905a-08c58e09aa47