PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Technical Condition of the Active Part of the High Power Transformer Based on Measurements and Analysis of Vibroacoustic Signals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of research connected with the development and industrial use of vibroacoustic methods for the evaluation of the technical condition of the active part of transformers. The article presents the results of the analysis of vibrations generated by the high power transformer in which a defect was found on the basis of tests of oil carried out using the chromatography tests. In order to confirm the damage of the active part of this transformer, vibroacoustic measurements were performed in three states of its operation. The measurement using the classical vibroacoustic method included the registration of vibrations at the idle speed and during the load operation of the transformer. The original diagnostic method, so-called the modified vibroacoustic method, was also used during the measurement. The analysis of signals recorded using the classical vibroacoustic method was carried out in the frequency domain by indicating the amplitude of even harmonic vibrations. However, the analysis of signals measured during the commissioning of the transformer was conducted in the time-frequency domain using the short-time Fourier transform (STFT), continuous wavelet transform (CWT), and discrete wavelet transform (DWT). On the basis of the analysis of the results obtained it was stated that the increased level of vibrations of this transformer is a consequence of the loss of rigidity of the mechanical structure of its core.
Rocznik
Strony
313--320
Opis fizyczny
Bibliogr. 13 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Institute of Electrical Power and Renewable Energy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland, s.borucki@po.opole.pl
autor
  • Institute of Electrical Power and Renewable Energy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
autor
  • Institute of Electrical Power and Renewable Energy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
autor
  • Institute of Electrical Power and Renewable Energy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
Bibliografia
  • 1. Bartoletti C., Dedideerio M., et al. (2004), Vibro-Acoustic Technique to Diagnose Power Transformers, IEEE Trans. on Power Del., 19, 1, 221–229.
  • 2. Borucki S. (2009), Vibroacoustic Measurements in a Transient State of Transformer Operatrion, Acta Physica Polonica A, 116, 277–280.
  • 3. Borucki S. (2012a), Diagnosis of Technical Condition of Power Transformers Based on the Analysis of Vibroacoustic Signals Measured in Transient Operating Conditions, IEEE Trans. on Power Del., 27, 670–676.
  • 4. Borucki S. (2012b), Method for assessing technical condition of transformer, involves analyzing vibration acceleration, and locating small and narrow bands at harmonic components of upper band after passing transient to steady-state operation of transformer, Patent Number PL394036-A1; PL219843-B1, Politechnika Opolska.
  • 5. Borucki S. (2014), Used of modified vibroacoustic method for diagnostics of power transformer cores, Studia i Monografie, No. 384, Printing House of Opole University of Technology, Opole.
  • 6. Borucki S., Cichoń A. (2010), The influence of power transformer load on vibroacoustic signal analysis results, Przegląd Elektrotechniczny, 86, 45–47.
  • 7. Dwojak J., Rzepiela M. (1999), Vibration diagnostics status of machinery and equipment, Practical quide [in Polish], Printing House of Biuro Gamma, Warszawa.
  • 8. Kaźmierski M., Olech W. (2013), Technical diagnostics and monitoring of transformers [in Polish], Printing House of ZPBE Energopomiar-elektryka Sp. z o. o., Gliwice.
  • 9. Léonard F., Foata M., Paquin J. Y. (2000), Vibro-Acoustic Signature Comparison and Time-Warping Correction with Multi-Scale Correlation, Mech. Sys. and Sig. Proc., 14, 3, 443–458.
  • 10. Mizokami M., Yabumoto M., Okazaki Y. (1997), Vibration Analysis of a 3-Phase Model Transformer Core, El. Eng. in Japan, 119, 1, 1–8.
  • 11. Shengchang J., Youngfen L., Yanming L. (2006), Research on Extraction Technique of Transformer Core Fundamental Frequency Vibration Based on OLCM, IEEE Trans. on Power Del., 21, 4, 1981–1988.
  • 12. Szymaniec S. (2006), Diagnosis of the state of the winding insulation and bearing condition squirrel cage induction motors in terms of industrial exploitation [in Polish: Diagnostyka stanu izolacji uzwojeń i stanu łożysk silników indukcyjnych klatkowych w warunkach przemysłowej eksploatacji ], Studia i Monografie, No. 193, Printing House of Opole University of Technology, Opole.
  • 13. Wotzka D., Boczar T., Malec T., Pierzga R. (2013), Analysis of Vibro-Acoustic Signals Generated during Operation of Micro Wind Turbines, Acta Physica Polonica A, 124, 595–597.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92dbef04-587f-4915-9321-c5279aac3cd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.