PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An LMI-based heuristic algorithm for vertex reduction in LPV systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The linear parameter varying (LPV) approach has proved to be suitable for controlling many non-linear systems. However, for those which are highly non-linear and complex, the number of scheduling variables increases rapidly. This fact makes the LPV controller implementation not feasible for many real systems due to memory constraints and computational burden. This paper considers the problem of reducing the total number of LPV controller gains by determining a heuristic methodology that combines two vertices of a polytopic LPV model such that the same gain can be used in both vertices. The proposed algorithm, based on the use of the Gershgorin circles, provides a combinability ranking for the different vertex pairs, which helps in solving the reduction problem in fewer attempts. Simulation examples are provided in order to illustrate the main characteristics of the proposed approach.
Rocznik
Strony
725--737
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Research Center for Supervision, Safety and Automatic Control (CS2AC), Polytechnic University of Catalonia (UPC), Rambla Sant Nebridi 10, 08222 Terrassa, Spain, adrian.sanjuan@upc.edu
  • Research Center for Supervision, Safety and Automatic Control (CS2AC), Polytechnic University of Catalonia (UPC), Rambla Sant Nebridi 10, 08222 Terrassa, Spain; Institute of Robotics and Industrial Informatics (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona, Spain, damiano.rotondo@upc.edu
  • Research Center for Supervision, Safety and Automatic Control (CS2AC), Polytechnic University of Catalonia (UPC), Rambla Sant Nebridi 10, 08222 Terrassa, Spain, fatiha.nejjari@upc.edu
  • Research Center for Supervision, Safety and Automatic Control (CS2AC), Polytechnic University of Catalonia (UPC), Rambla Sant Nebridi 10, 08222 Terrassa, Spain, ramon.sarrate@upc.edu
Bibliografia
  • [1] Apkarian, P., Gahinet, P. and Becker, G. (1995). Self-scheduled H∞ control of linear parameter-varying systems: A design example, Automatica 31(9): 1251–1261.
  • [2] Apkarian, P. and Tuan, H.D. (2000). Parameterized LMIs in control theory, SIAM Journal on Control and Optimization 38(4): 1241–1264.
  • [3] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
  • [4] Chilali, M. and Gahinet, P. (1996). H∞ design with pole placement constraints: An LMI approach, IEEE Transactions on Automatic Control 41(3): 358–367.
  • [5] Chitraganti, S., Tóth, R., Meskin, N. and Mohammadpour, J. (2017). Stochastic model predictive tracking of piecewise constant references for LPV systems, IET Control Theory & Applications 11(12): 1862–1872.
  • [6] Curran, P.F. (2009). On a variation of the Gershgorin circle theorem with applications to stability theory, IET Irish Signals and Systems Conference (ISSC 2009), Dublin, Ireland, pp. 1–5.
  • [7] El-Sakkary, A. (1985). The gap metric: Robustness of stabilization of feedback systems, IEEE Transactions on Automatic Control 30(3): 240–247.
  • [8] Fergani, S., Menhour, L., Sename, O., Dugard, L. and D’Andréa-Novel, B. (2017). Integrated vehicle control through the coordination of longitudinal/lateral and vertical dynamics controllers: Flatness and LPV/H∞-based design, International Journal of Robust and Nonlinear Control 27(18): 4992–5007.
  • [9] Fleischmann, S., Theodoulis, S., Laroche, E., Wallner, E. and Harcaut, J.-P. (2016). A systematic LPV/LFR modelling approach optimized for linearised gain scheduling control synthesis, AIAA Modeling and Simulation Technologies Conference, San Diego, CA, USA, p. 1921.
  • [10] Gahinet, P., Apkarian, P. and Chilali, M. (1996). Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Transactions on Automatic Control 41(3): 436–442.
  • [11] Ho, W.K., Lee, T.H., Xu, W., Zhou, J.R. and Tay, E.B. (2000). The direct Nyquist array design of PID controllers, IEEE Transactions on Industrial Electronics 47(1): 175–185.
  • [12] Hoffmann, C. and Werner, H. (2015). A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations, IEEE Transactions on Control Systems Technology 23(2): 416–433.
  • [13] Inthamoussou, F.A., Bianchi, F.D., De Battista, H. and Mantz, R.J. (2014). LPV wind turbine control with anti-windup features covering the complete wind speed range, IEEE Transactions on Energy Conversion 29(1): 259–266.
  • [14] Jabali, M. B.A. and Kazemi, M.H. (2017). A new LPV modeling approach using PCA-based parameter set mapping to design a PSS, Journal of Advanced Research 8(1): 23–32.
  • [15] Kwiatkowski, A., Boll, M.-T. andWerner, H. (2006). Automated generation and assessment of affine LPV models, 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 6690–6695.
  • [16] Kwiatkowski, A. and Werner, H. (2008). PCA-based parameter set mappings for LPV models with fewer parameters and less overbounding, IEEE Transactions on Control Systems Technology 16(4): 781–788.
  • [17] Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE International Symposium on Computer Aided Control Systems Design, New Orleans, LA, USA, pp. 284–289.
  • [18] López-Estrada, F.-R., Ponsart, J.-C., Astorga-Zaragoza, C.-M., Camas-Anzueto, J.-L. and Theilliol, D. (2015). Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor, International Journal of Applied Mathematics and Computer Science 25(2): 233–244, DOI: 10.1515/amcs-2015-0018.
  • [19] Luspay, T., Péni, T., Gőzse, I., Szabó, Z. and Vanek, B. (2018). Model reduction for LPV systems based on approximate modal decomposition, International Journal for Numerical Methods in Engineering 113(6): 891–909.
  • [20] Marcos, A. and Balas, G.J. (2004). Development of linear-parameter-varying models for aircraft, Journal of Guidance, Control, and Dynamics 27(2): 218–228.
  • [21] Mohammadpour, J. and Scherer, C.W. (2012). Control of Linear Parameter Varying Systems with Applications, Springer, New York, NY.
  • [22] Montagner, V., Oliveira, R., Leite, V.J. and Peres, P.L.D. (2005). LMI approach for H∞ linear parameter-varying state feedback control, IEE Proceedings: Control Theory and Applications 152(2): 195–201.
  • [23] Nguyen, A.-T., Chevrel, P. and Claveau, F. (2018). Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations, Automatica 89: 420–424.
  • [24] Packard, A. (1994). Gain scheduling via linear fractional transformations, Systems & Control Letters 22(2): 79–92.
  • [25] Pemmaraju, S. and Skiena, S. (2003). Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Cambridge University Press, New York, NY.
  • [26] Quarteroni, A., Sacco, R. and Saleri, F. (2010). Numerical Mathematics, Vol. 37, Springer Science & BusinessMedia, New York, NY.
  • [27] Rahideh, A. and Shaheed, M. (2007). Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system, Proceedings of the Institution of Mechanical Engineers I: Journal of Systems and Control Engineering 221(1): 89–101.
  • [28] Rizvi, S. Z., Mohammadpour, J., Tóth, R. and Meskin, N. (2016). A kernel-based PCA approach to model reduction of linear parameter-varying systems, IEEE Transactions on Control Systems Technology 24(5): 1883–1891.
  • [29] Rotondo, D. (2017). Advances in Gain-Scheduling and Fault Tolerant Control Techniques, Springer, Cham.
  • [30] Rotondo, D., Nejjari, F. and Puig, V. (2013). Quasi-LPV modeling, identification and control of a twin rotor MIMO system, Control Engineering Practice 21(6): 829–846.
  • [31] Rotondo, D., Nejjari, F. and Puig, V. (2014). Robust state-feedback control of uncertain LPV systems: An LMI-based approach, Journal of the Franklin Institute 351(5): 2781–2803.
  • [32] Rotondo, D., Puig, V., Nejjari, F. and Romera, J. (2015a). A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot, IEEE Transactions on Industrial Electronics 62(6): 3932–3944.
  • [33] Rotondo, D., Puig, V., Nejjari, F. and Witczak, M. (2015b). Automated generation and comparison of Takagi–Sugeno and polytopic quasi-LPV models, Fuzzy Sets and Systems 27(C): 44–64.
  • [34] Rugh, W.J. and Shamma, J.S. (2000). Research on gain scheduling, Automatica 36(10): 1401–1425.
  • [35] Sturm, J.F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software 11(1–4): 625–653.
  • [36] Sun, X.-D. and Postlethwaite, I. (1998). Affine LPV modelling and its use in gain-scheduled helicopter control, UKACC International Conference on Control ’98, Swansea, UK, Vol. 2, pp. 1504–1509.
  • [37] Theis, J., Seiler, P. and Werner, H. (2017). LPV model order reduction by parameter-varying oblique projection, IEEE Transactions on Control Systems Technology 26(3): 773–784.
  • [38] Theodoulis, S. and Duc, G. (2009). Missile autopilot design: Gain-scheduling and the gap metric, Journal of Guidance, Control, and Dynamics 32(3): 986–996.
  • [39] Tseng, C.-S., Chen, B.-S. and Uang, H.-J. (2001). Fuzzy tracking control design for nonlinear dynamic systems via TS fuzzy model, IEEE Transactions on Fuzzy Systems 9(3): 381–392.
  • [40] Vinnicombe, G. (1996). The robustness of feedback systems with bounded complexity controllers, IEEE Transactions on Automatic Control 41(6): 795–803.
  • [41] White, A.P., Zhu, G. and Choi, J. (2013). Linear Parameter-Varying Control for Engineering Applications, Springer, London.
  • [42] Zhao, P. and Nagamune, R. (2017). Switching LPV controller design under uncertain scheduling parameters, Automatica 76: 243–250.
  • [43] Zhou, M., Rodrigues, M., Shen, Y. and Theilliol, D. (2018). H /H∞ fault detection observer design for a polytopic LPV system using the relative degree, International Journal of Applied Mathematics and Computer Science 28(1): 83–95, DOI: 10.2478/amcs-2018-0006.
  • [44] Zribi, A., Chtourou, M. and Djemal, M. (2016). A systematic determination approach of model’s base using gap metric for nonlinear systems, Journal of Dynamic Systems, Measurement, and Control 138(3): 031008.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92b0d5da-073e-40b7-958c-008b1d55e6fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.