Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-90f79d66-3d7c-47e8-9035-baba1bdd93d1

Czasopismo

Archivum Combustionis

Tytuł artykułu

Flameless combustion - state of art

Autorzy Szymczyk, J.  Olszewski, P. 
Treść / Zawartość http://archcomb.itc.pw.edu.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Fossil fuel combustion, mainly natural gas, is one of the most common heat source used in high-temperature industrial processes (metallurgy, glass industry). Alternative energy sources or total elimination of fossil fuels are not achievable at our current knowledge and technology development stage. Therefore, optimization of combustion processes is a one of a possible ways for reduction of emission and fossil fuels consumption. In the recent years, a homogenous combustion became the subject of researchers’ interest. This type of combustion is determined by flameless fuel oxidation, what causes more uniform temperature distribution within the reacting zone. This way, high temperature zones are eliminated and simultaneously the NOx production is reduced. The aim of this review is presentation of already posted research related to the homogenous combustion as an alternative heat source for existing industrial applications.
Słowa kluczowe
EN fossil fuels   flameless oxidation   emissions  
Wydawca Komitet Termodynamiki i Spalania PAN
Czasopismo Archivum Combustionis
Rocznik 2016
Tom Vol. 36 nr 1
Strony 13--36
Opis fizyczny Bibliogr. 108 poz., rys., tab.
Twórcy
autor Szymczyk, J.
autor Olszewski, P.
  • University of Wisconsin Oshkosh 800 Algoma Blvd. Oshkosh, WI 54901
Bibliografia
[1] De Soete, G., Physikalisch-chemische Mechanismen bei der Stickstoffoxidbildung in industriellen Flammen. Gas Wärme International, 30(1), 15-23, 1981
[2] Zeldovich, J., The oxidation of nitrogen in combustion and explosions. Acta Physiochimica U.R.S.S., XXI(4), Academy of Science of the USSR, 1946
[3] Miller J. A., Bowman, C. T., Progress of Energy Combustion Science, 1989, 15, 287-338
[4] Milani, A., NOx-reduction in the E.C. CSM class, Milano, 1994.
[5] Milani A., Wünning J., What is Flameless Combustion? IFRF Online Combustion Handbook, ISSN 1607-9116, 2002.
[6] Katsuki M., Hasegawa T., Proc. Combust. Inst. 27 3135–3146, 1998.
[7] Plessing T., Peters N., Wunning J.G., Laseroptical Investigation of Highly Preheated Combustion with Strong Exhaust Gas Recirculation, 27th Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 3197–3204, 1998.
[8] Cavigiolo, A., Galbiati, M. A., Effuggi, A., Gelosa, D.,Rota R., Mild combustion in a laboratory-scale apparatus”, Combustion Science and Technology, Vol. 175[8], pp. 1347-1367, 2003.
[9] Dally B.B., Riesmeier E. and Peters N., Effect of fuel mixture on moderate and intense low oxygen dilution combustion, 2004.
[10] He Y., Flameless Combustion of Natural Gas in the SJ/WJ Furnace, PhD dissertation, Queen’s University, Kingston, Ontario, Canada, 2008.
[11] Tsuji H., Gupta A.K., Hasegawa T., Katsuki M., Kishimoto K., Morita M., High Temperature Air Combustion: From Energy Conservation to Pollution Reduction, CRC Press, Boca Paton, FL, 2003
[12] Katsuki M. , Hasegawa T. , The science and Technology of Combustion in Highly Preheated Air Proc. Combust. Inst. 27 (1998) 3135–3146
[13] Wünning A., Wünning J.G., Flameless Oxidation to Reduce NO-formation, Progress in Energy and Combustion Science, 23, 81–94, 1997
[14] Weber R.: Proceedings of the Fourth International Conference on High Temperature Air Combustion and Gasification, Rome, 2001
[15] Weber R., Verlaan A.L., Orsino S., Lallemant N., On emerging furnace design methodology that provides substantial energy savings and drastic reductions in CO2, CO and NOx emissions, J. Inst. Energy 72 (1999) 77–83.
[16] Cavaliere, A., Joannon, M., Mild combustion. Prog Energy Combust Sci 30: pp. 329-366, 2004.
[17] Krishnamurthy N., Blasiak W., Lugnet A., Development of High Temperature Air and Oxy-Fuel combustion technologies for minimized CO2 and NOx emissions in Industrial Heating, The Joint International Conference on “Sustainable Energy and Environment (SEE)”, Hua Hin, Thailand, 1-3 December 2004.
[18] Seung Jun Shin, Homogenous Combustion and its Application to Industrial Furnaces, PhD thesis, University of Michigan, 2008
[19] Katsuki, M., Hasegawa T., The science and technology of combustion in highly preheated air. Symposium (International) on Combustion, 27(2): p. 3135-3146, 1998.
[20] Wünning, J.A., Wünning J.G., Flameless oxidation to reduce thermal no-formation. Progress in Energy and Combustion Science, 23(1): p. 81-94, 1997.
[21] Zabetakis M.G., Flammability Characteristics of Combustible Gases and Vapors, Bulletin 627, Bureau of Mines, USA, 1965.
[22] Mastorakos E., Taylor A.M.K.P., Whitelaw J.H., Extinction of Turbulent Counterflow Flames with Reactants Diluted by Hot Products, Combust. Flame 102, 101–114, 1995
[23] Coelho P. J., Peters N., Numerical Simulation of a Mild Combustion Burner, 2001
[24] Mastorakos, E., Taylor A.M., and Whitelaw J.H., Turbulent counterflow flames with reactants diluted by hot products. Joint Meeting of the British and German sections, 1993
[25] Li, PengFei; Mi, JianChun; Dally, B. B., Wang FeiFei, Wang, Lin, Liu, ZhaoHui; Chen, Sheng; Zheng, ChuGuang, Progress and recent trend in MILD combustion, Science China, Technological Sciences, vol. 54, No. 2: 255-269, February 2011
[26] Zieba, M., Brink, A., Schuster, A., Ammonia chemistry in flameless jet. Combust Flame 156: pp.19501956, 2010
[27] Mancini, M., Schwoppe, P., Weber, R., On mathematica modelling of flameless combustion. Combust Flame: pp 54-59, 2007
[28] Kim J.P., Schnell U., Scheffknecht, G, Comparison of different global reaction mechanisms for mild combustion of natural gas. Combust Sci Technol 180: pp. 565-592, 2008
[29] Mancini, M., Weber, R., Bollettini, U., Predicting NOx emissions of a burner operated in flameless oxidation mode. Proc Combust Inst 29: pp. 1155-1163, 2002
[30] Yang, W., Blasiak, W., Mathematical modelling of NO emissions from high temperature air combustion with nitrous oxide mechanism. Fuel Process Technol 86: pp. 943-957, 2005
[31] Ponzio, A., Senthoorselvan, S., Yang, W., Nitrogen release during thermochemical conversion of single coal pellets in highly preheated mixtures of oxygen and nitrogen. Fuel 88: pp. 1127-1134, 2009
[32] Yang W. H., Blasiak W., Numerical simulation of properties of a LPG flame with hightemperature air. Int J Therm Sci 44: pp. 973-985, 2005
[33] Ponzio, A., Senthoorselvan, S., Yang, W. H., Ignition of single coal particles in high temperature oxidizers with various oxygen concentrations. Fuel 87: pp. 974-987, 2008
[34] Ayoub M., Rottier C., Carpentier S., Villermaux C., Boukhalfa A.M., Honore D., An experimental study of mild flameless combustion of methane/hydrogen mixtures, international journal of hydrogen energy 37,6912-6921, 2012
[35] Weber R., Orsino S., Lallemant N., Combustion of natural gas with high temperature air and large quantities of flue gas. Proc Combust Inst 28: pp. 1315-1321, 2000.
[36] Orsino S., Weber R., Bollettini U., Numerical simulation of combustion of natural gas with high temperature air. Combust Sci Technol 170: pp. 1-34, 2001
[37] Joannon M., Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime. Proc Combust Inst 32: pp. 3147-3154, 2009
[38] Joannon M., Cavaliere A., Donnarumma R., Dependence of autoignition delay on oxygen concentration in mild combustion of high molecular weight paraffin. Proc Combust Inst 29: pp. 11391146, 2003
[39] Galletti C., Parente A., Tognotti L., Numerical and experimental investigation of a mild combustion burner. Combust Flame 151: pp. 649-664, 2007
[40] Galbiati M., Cavigiolo A., Effuggi A., Mild combustion for fuel NOx reduction. Combust Sci Technol 176: pp. 1035-1054, 2004
[41] Dally B. B., Craig R. A., Mi J. C., Dependence of flameless combustion on fuel-air injection pattern and their momentum ratio in a recuperative furnace. In: Proceedings of the Ninth Asia Pacific International Symposium on Combustion and Energy Utilization. Wuhan, China, 35–40, 2008
[42] Dally B. B., Karpetis A. N., Barlow R. S., Structure of turbulent non premixed jet flames in a diluted hot coflow. Proc Combust Inst 29: pp. 1147-1154, 2002
[43] Szegö G. G., Dally B. B., Nathan G. J., Scaling of NOx emissions from a laboratoryscale mild combustion furnace. Combust Flame 154: pp. 281-29, 2008
[44] Dally B. B., Shim S. H., Craig R. A., Ashman P.J., Szego G.G., On the burning of sawdust in a MILD Combustion Furnace, Energy & Fuels, 24, 3462-3470, 2010
[45] Choi, G. M., Katsuki, M., Advanced low NOx combustion using highly preheated air. Energy Conv Manag 42: pp. 639-652, 2001
[46] Gupta, A. K., Thermal characteristics of gaseous fuel flames using high temperature air. J Eng Gas Turbines PowerTrans ASME 126: pp. 919, 2004
[47] Atreya, A. A Study of Radiative Flameless Combustion in a Furnace,Combustion and Flame, (2014)
[48] Li P. F., Mi J. C., Dally B. B., Effect of equivalence ratio and reactants mixing pattern on flameless combustion. Chinese Society of Engineering Thermophysics Conference. Chinese Society of Engineering Thermophysics, Guang Zhou, 2010
[49] Mi J. C., Li, P. F., Zheng, C. G. Numerical simulations of flameless premixed combustion in a recuperative furnace. Chin J Chem Eng 18: pp. 10-17, 2010
[50] Mi J. C., Li P.F., Dally B. B., Importance of initial momentum rate and airfuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace. Energy Fuels 23: pp. 5349-5356, 2009
[51] Li P. F., Mi J. C., Critical reynolds numbers for realization of MILD combustion in a recuperative furnace. The 8th International Symposium on High Temperature Air Combustion and Casification. Poznan University of Technology Press, Poznań, 2010
[52] Qi H. Y., Li Y. H., You C. F., Emission on NOx in high temperature combustion with low oxygen concentration. J Combust Sci Technol 8: pp. 17-22, 2001
[53] Li Y. H., Qi H. Y., Yuan J., Numerical analysis of high temperature combustion of methane. J Eng Thermophys 22: pp. 257-260, 2001
[54] Wang J. T., Qi H. Y., Li Y. H., Experimental study on heat transfer performance of honeycomb heat regenerator. J Eng Thermophys 24: pp. 897-899, 2003
[55] Wang L. J., Cai J. J., Zou Z. S., Numerical investigation of turbulent mixing in a high temperature air combustion furnace. Chinese J Comput Phys 21: pp. 357-361, 2004
[56] Wang A. H., Cai J. J., Xie G. W., Numerical simulation of combustion characteristics in high temperature air combustion furnace. J Iron Steel Res Int 16: pp. 6-10, 2009
[57] Abuelnuora A. A. A., Wahida Mazlan, Saata A., Osman M., Characterization of a Low NOx Flameless Combustion Burner Using Natural Gas, Jurnal Teknologi (Sciences & Engineering) 66:2, 121–125, 2014
[58] Veríssimo A.S., Rocha A.M.A., Costa M., Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor, Experimental Thermal and Fluid Science, 2012
[59] Mahendra Reddy V., Darshan Sawant D., Trivedi D., Kumar S., Studies on a liquid fuel based two stage flameless combustor, Proceedings of the Combustion Institute 34, 3319–3326, 2013
[60] Machocki A., Rotko M., Stasinska B., SSITKA studies of the catalytic flameless combustion of methane Catalysis Today 137 312–317, 2008.
[61] Özdemir I.B., Peters N., Characteristics of the reaction zone in a combustor operating at mild combustion, Experiments in Fluids 30, Springer-Verlag, 683–695, 2001
[62] Masson E., Taupin B., Aguile F., Carpentier S., Meunier P., Quinqueneau A., Honore D., Boukhalfa A. M., An experimental facility at laboratory scale to assess the effect of confinement on flameless combustion regime;; European Combustion Meeting, 2005.
[63] Curtet R., Confined jets and recirculation phenomena with cold air, Combust. Flame 2:383-411, 1958
[64] Thring M.W., Newby M. P., 4th Symposium (international) ion Combustion, The Combustion Institute, p. 789-796, 1953
[65] Lavoie G.A., Heywood J.B., Keck J.C., Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines. Combust. Sci. Tech. 1 (4): 313–326, 1970
[66] Magnussen B. F., Hjertager B. H., On mathematical Modelling of Turbulent Combustion with Special Emphasis on SOOt Formation and Combustion, pp. 719-729, 1976
[67] Bowman C.T., Kinetics of pollutant formation and destruction in Combustion, Prog. Energy Combust. Sci, 1:33-45, 1975
[68] De Soete G.G., 15th Symposium (Intermational) on Combustion, The Combustion Institute, p. 10931102, 1975
[69] Rivas M., Coda Zabetta E., IFRF Online Combustion Handbook – Combustion File no. 40, 2003; http://www.handbook.ifrf.net
[70] Westbrook C.K., Dryer F.L., Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology, 27: p. 31–43, 1981
[71] Launder B. E., Spalding D. B., The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269-289, 1974
[72] Gosman A. D., Lockwood F. C., Incorporation of a flux model for radiation into a finite difference procedure for furnace calculations, 14th Symp. Combustion, p661, 1973, Imperial College, London, England
[73] Rodi W., Turbulence Models and their Application in Hydraulics. A state of Art Review. IAHR, Karlsruhe, 1980
[74] Renz U., Wärme- und Stoffaustausch bei der Verbrennung Lecture script, RWTH Aachen, Germany
[75] Patankar S. V., Numerical Heat Transfer and Fluid Flow. Hemisphere, New York,1980
[76] Poliakov I., Strain V., Development and evaluation of new linear equation solvers for PHOENICS. PHOENICS-Journal, Wimbledon, England, 1994
[77] Christo F. C., Dally B. B., Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust Flame, 142(1-2): 117–129, 2005
[78] de Joannon M., Langella G., Beretta F., Cavaliere A., Noviello C., Proceedings of theMediterranean Combustion Symposium, pp. 347–360, 1999
[79] Yu Y., Gaofeng W., Qizhao L., Chengbiao M., Xianjun X., Flameless combustion for hydrogen containing fuels, International Journal of Hydrogen Energy 352694 – 2697, 2010
[80] Derudi M., Villani A., Rota R., Mild combustion of industrial hydrogencontaining byproducts, Ind Eng Chem Res, 10, 46(21): 6806–6811, 2007
[81] Derudi M., Villani A., Rota R., Sustainability of mild combustion of hydrogencontaining hybrid fuels. Proc Combust Inst 31: pp. 3393-3400, 2007
[82] Sabia P, de Joannon M., Fierro S., Tregrossi A., Cavaliere A., Hydrogen-enriched methane Mild Combustion in a well stirred reactor, Experimental Thermal and Fluid Science 31, 469–475, 2007
[83] Galletti C., Parente A., Derudi M., Numerical and experimental analysis of NO emissions from a labscale burner fed with hydrogen enriched fuels and operating in MILD combustion. Int J Hydrog Energy 34: pp. 8339-8351, 2009
[84] Parente A., Galletti C., Tognotti L., Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels. Int J Hydrog Energy 33: pp. 7553-7564, 2008
[85] Wu S. R., Chang W. C., Chiao J., Low NOx heavy fuel oil combustion with high temperature air. Fuel 86: pp. 820-828, 2007
[86] Effuggi A, Gelosa D, Derudi M, et al., Mild combustion of methane-derived fuel mixtures: Natural gas and biogas. Combust Sci Technol, 180(3): 481–493, 2008
[87] Szegö G. G., Dally B. B., Nathan G. J., Operational characteristics of a parallel jet MILD combustion burner system. Combust Flame, 156(2): 429–438, 2009.
[88] Peters N., Fifteen Lectures on Laminar and Turbulent Combustion, Ercoftac Summer School, RWTH Aachen, September 14–25, 1992
[89] Hasegawa T., Mochida S.Gupta A.K., Development of advanced industrial furnace using highly preheated combustion air. Journal of Propulsion and Power, 18(2): p. 233-239, 2002
[90] Garg A., Specify better low-NOx burners for furnaces. Chem Eng Prog: p. 46-49, 1994
[91] Teng H., Huang T. S.,. Control of NOx emissions through combustion modifications for reheating furnaces in steel plants, 1996
[92] Telger R., Roth W., Betriebserfahrung beim Einsatz von Brennern mit flammloser Oxidation. Gas Wiirme International, 44(7/8), 332-337, 1995
[93] Saul A., Altemark D., Lean-Burn premixed Combustion in Gas Turbine Combustors. Gas Wärme International, 40, 336, 1991
[94] Lallemant N., Sayre A., Weber R., Evaluation of emissivity correlations for H2O-CO2-N2/air mixtures and coupling with solution methods of the radiative transfer equation. Progress in Energy and Combustion Science. 22(6): p. 543-574, 1996
[95] Tanaka R., New progress of energy saving technology towards the 21st century, Frontier of combustion and heat transfer technology. Proceedings of the 11th Members Conference of the International Flame Research Foundation, 1995
[96] Awosope I.O., Lockwood F.C., Prediction of Combustion and NOx Emission Characteristics of Flameless Oxidation Combustion. IFRF Combustion Journal, 2005.
[97] Lille S., Blasiak W., Jewartowski M., Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases. Energy 30(2-4): p. 373-84, 2005
[98] Fujimori T., Riechelmann D., Sato J., Effect of lift-off on NOx emission of turbulent jet flame in high temperature co flowing air. 27th International Symposium on Combustion, 1998
[99] Fleck B.A., Sobiesiak A., Becker H.A., Experimental and numerical investigation of the novel low NOx CGRI burner. Combustion Science and Technology,. 161(1-6): p. 89-112, 2000
[100] http://www.handbook.ifrf.net/handbook/cf.html?id=176
[101] Baade P. K., How to Solve Abnormal Combustion Noise Problems, Consultant, Fayetteville, New York; http://www.sandv.com/downloads/0407baad.pdf
[102] Wünning J. G., “FLOX® – Flameless Combustion”, , Thermoprozess- und Abfalltechnik, Thermprocess Symposium, 2003
[103] Wünning J. G., Small Capacity Regenerative Burners, , 2007 AFRC - JFRC International Symposium October 16-18, Hawaii, 2006
[104] Massingham J., Evaluation of low NOx regenerative burners for steel industry applications, 2nd seminar on High Temperature Combustion in Industrial Furnaces, Stockholm, 2000
[105] Tang Z G, Ma P Y, Li Y L, et al., Design and experiment research of a novel pulverized coal gasifier based on flameless oxidation technology. Proc CSEE, 30(8): 50–55, 2010
[106] Nitrogen oxides formation in combustion processes; http://fluid.wme.pwr.wroc.pl/~spalanie/dydaktyka/combustion_en/NOx/NOx_formation.pdf
[107] Andrzej Smolarz A., Diagnostyka procesów spalania paliw gazowych, pyłu węglowego oraz mieszaniny pyłu węglowego i biomasy z wykorzystaniem metod optycznych, Politechnika Lubelska, Lublin 2013, http://bc.pollub.pl/dlibra/docmetadata?id=4054
[108] Kotowski W., Elektrownie nowej generacji, Czysta Energia – październik 2007; http://www.cire.pl/pliki/2/elektr_now_gen.pdf
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-90f79d66-3d7c-47e8-9035-baba1bdd93d1
Identyfikatory