A comparative assessment of meteorological drought in the Tafna basin, Northwestern Algeria

Hanane Bougara1), 2), Kamila Baba Hamed1), Christian Borgemeister3)!, Bernhard Tischbein3)!, Navneet Kumar3)!
1) University of Abou Bekr Belkaid, Faculty of Technology, Tlemcen BP 230 - 13000, Chetouane Tlemcen, Algeria
2) Pan African University Institute of Water and Energy Sciences (PAUWES), Tlemcen, Algeria
3) University of Bonn, Center for Development Research (ZEF), Bonn, Germany

RECEIVED 13.09.2020 REVIEWED 30.11.2020 ACCEPTED 09.07.2021

Abstract: The drought ranked first in terms the natural hazard characteristics and impacts followed by tropical cyclones, regional floods, earthquakes, and volcanoes. Drought monitoring is an important aspect of drought risk management and the assessment of drought is usually done through using various drought indices. The western region in Algeria is the most affected by the drought since the middle of the 70s. The current research focuses on the analysis and comparison of four meteorological drought indices (standardized precipitation index – SPI, percent of normal index – PN, decile index – DI, and rainfall anomaly index – RAI) in the Tafna basin for different time scales (annual, seasonal, and monthly) during 1979–2011. The results showed that the SPI and DI have similar frequencies for dry and wet categories. The RAI and PN were able to detect more drought categories. Meanwhile, all indices have strong positive correlations between each other, especially with Spearman correlation tests (0.99; 1.0), the meteorological drought indices almost showed consistent and similar results in the study area. It was determined in 1982 as the driest year and 2008 as the wettest year in the period of the study. The analysis of the trend was based on the test of Mann–Kendall (MK), a positive trend of the indices were detected on a monthly scale, this increasing of indices trend represent the increasing of the wet categories which explains the increasing trend of the rainfall in the last 2000s. These results overview of the understanding of drought trends in the region is crucial for making strategies and assist in decision making for water resources management and reducing vulnerability to drought.

Keywords: drought, meteorological drought indices, Tafna basin, trend analysis

INTRODUCTION

Drought is an inevitable and recurring feature of the global water cycle [FAKAYMAN, AGHAROUCHEK 2019], and it is expected to affect as many as one-third of the world’s population [SWEITALINA, THOMAS 2016], and a large proportion of the agricultural sector, especially in arid and semi-arid regions in Mediterranean [KUMAR 1998; TIGKAS, TSAKIRIS 2014], which is already suffering from stress and water availability [Ma et al. 2015] due irregularity of rainfall in time and space [SHAHARAF, EITZINGER 2013] and expected to be worsen in future due to climate change [IPCC 2014].

Drought is one of the most damaging natural hazard and can be classified to four categories. Drought meteorological characterizes a broad range of climatic situations related to either negative departure of rainfall from the normal rainfall over a period of time consequent to the high temperature and the evapotranspiration, these are considered as significant factors of controlling the formation and persistence of the condition of drought, and usually appears before other types of drought (agricultural, hydrological, socio-economic drought) [BAZRAF-SHAN, KHAIKI 2013; IPCC 2014; LLOYD-HUGHES, SANDERS 2002; MARENGO et al. 2011; SIO JUN et al. 2011; SWEITALINA, THOMAS 2016; VOGT, SOMMA 2000].
Several studies have used drought indices as drought monitoring tools at different parts of the world to describe the droughts quantitatively and make the decision on estimations of the characteristics of a drought period and their consequences upon the hydrological cycle [Afzali et al. 2016; Al-Timimi, Osmari 2016; Asefiah et al. 2014; Bagheri 2016; Dogan et al. 2012; Shahi et al. 2015; Tsakiris et al. 2013]. There are indicators disaggregated by the type of drought [Gutjahr 1998; Wilhite, Glantz 1985], and classified into four main types: (a) meteorological drought, related to precipitation deficit which cause decreases in water supplies of a region over a period of time; (b) hydrological drought, defined as a deficit in surface water storage or groundwater causing reductions in water uses and effect to water resources management system; (c) agricultural drought, deficit in soil moisture and the consequent to crop failure at a particular period; and has no reference to stream flow; meteorological drought, hydrological drought and agricultural drought are also considered as environmental droughts whereas; (d) socio-economic drought is deficit of water supply for socio-economic purpose, and it can be considered as water resources droughts [Azarakhshi et al. 2011; Passioura 2007; Wilhite, Glantz 1985; WMO 2006].

Drought is a frequent climate that determines its precision and the difficulty of studying the various dimensions of it. It can be described by three factors: severity, duration, and frequency of occurrence [Soleimanpour, Vahabmand 2014; Tsakiris et al. 2007; Wilhite 2000]. It has been observed that droughts have increased in magnitude and frequency, over the last few decades around the world. Droughts affect almost all the components of the hydrological cycle beginning with the precipitation factor that experienced a long period of the deficit, which has negative influence in hydrological drought of the streamflow and resulted in deficit for surface water and groundwater [Bayan, Rohe 1985; Sammoura et al. 2013; Tsakiris et al. 2013]. There is no single definition of drought and it is difficult to determine its onset and termination. However, there are several drought indices developed to measure and monitor different types of droughts which is related to some of the cumulative effects of a prolonged and abnormal moisture deficiency such as standardized precipitation index (SPI), surface water supply index (SWSI), etc. However, several of the drought indices have limitation in the application in order to monitored the drought condition due to climate condition as well the time step, and thus must addressing more than one index [Jain et al. 2015; Morid et al. 2006]. However, identify various indicators of drought, and tracking these indicators provides the assimilation for thousands of data on rainfall, streamflow, and other water supply indicators, more useful than raw data for decision making and crucial means of monitoring drought. Drought indices are usually calculated, either by applying manually the corresponding equations, or by using tools, that provide a comprehensive assessment and give a better perspective for outputs [Tigkas et al. 2015].

Algeria is one of the countries, which has experienced several drought years, with high variability in annual rainfall [Habibi et al. 2018] with a reduction of 10% since the end of the 1970s [Sammoura 2013] this may affect the water mobilized in dams and groundwater. Particularly affected is the western north region [Meddi, Hubert 2003; Meddi, Meddi 2009], where experienced deficits in rainfall from 12% to 20% [Medjrab, Henia 2005]. This region suffered by drought years [Meddi et al. 2013] with the return of rising in rainfall between 2001 and 2007 [Khoualidia et al. 2014]. And the severe/extreme droughts have return periods of around 36 [Halwatura et al. 2017; Lazri et al. 2015; McCarthy 2001].

Numerous studies have been conducted to analyse and identify drought condition from different parts of the world as for example, the analysis of the hydrological drought over 36 years (1972–2007) in Ghatapraba River basin, India, indicated moderate drought between 1986–1988 and 2001–2005 [Pathak et al. 2016]. Whereas in semi-arid areas, the studies that were conducted in different regions in Iran for drought monitoring showed that the region has been suffered from a range of moderate to extreme droughts [Akbari et al. 2015; Morid et al. 2006; Zarei et al. 2017]. The studies in the Mediterranean area, such as in Greece showed that the indices identify the same drought events which appears in the four study for 45 years (from 1956 to 2001) [Kanellos et al. 2008]. While the study in the Balearic Islands in Spain from 1974 to 2014, showed two drought episodes between 1988–1991 and 1999–2001 [Lorenzo-Lacruz, Moran-Tiede 2016]. Further, in the south Mediterranean area, the researches of Abdelmalek and Noubi [2020] and Gader et al. [2020] in Tunisia region explored the pattern of historical droughts and characterize drought variability based on meteorological drought results, which demonstrated that Tunisia has experienced several multi-year droughts (from 3 to 7 years) with different severities, and is marked by a significant spatio-temporal variability of drought, with varying extreme wet and dry events. In the Inaouen region of northern Morocco, the analysis of the droughts showed that the frequency of episodes of drought varied according to the time scale considered [Boudad et al. 2018]. Similar researchs in northern of Algeria studied the drought behaviour in the time series and the results showed that the severe/extreme drought increases considerably rising from the probability of probability of drought occurred through a Markovian approach is 0.2650 in 2005 to a stable probability of 0.5756 in 2041. [Lazri et al. 2015]. While in the northeast region of the country were studied for the variability and trends in annual rainfall data for the period between 1970 and 2011 and it was found that the important fluctuation where experienced a long dry period with a moderate severity followed by a long wet period and a significant increasing rainfall trend [Khezazia et al. 2017]. The studies in northwest of Algeria identified that the region had suffered from a severe drought especially after 1970’s and multi-year drought, and this information may provide scientific support for managing drought situations [Delloul et al. 2016; Habibi et al. 2018; Khoualidia et al. 2014; Meddi et al. 2013; Morid et al. 2018b].

The main objective of this study is a comparative analysis of four meteorological drought indices: (i) the standardized precipitation index (SPI), (ii) the percent of normal index (PN), (iii) the decile index (DI), and (iv) rainfall anomaly index (RAI). No index is ideal and/or universally suitable. The choice of indices for drought monitoring in a specific area should eventually be based on how commonly used these indices to determine the drought and the quantity of data availability [Azarakhshi et al. 2011; Bouardelli et al. 2020; Dekics 2020; Morid et al. 2006]. A common feature of the selected indices is that they all are calculated using only rainfall data at different time scales and allows the analysis of different drought categories. In order to assess the performance of these indices in the Tafna basin.
(Northwest of Algeria) reflecting the amount of rainfall, which represents the water resources availability and its relation to the several activities related to water [BATISSA et al. 2015; TABARI et al. 2012]. Furthermore, SPI found as a highly valuable estimator of drought severity [KEYANTASH, DRACUP 2002] and was proven superior to Palmer drought severity index (PDSI) [GUTTMAN 1998; PAULO, PEREIRA 2006], and other rainfall based indices [DOGAN et al. 2012; HANSAN et al. 2016; McKee et al. 1993; MORID et al. 2006; VAN ROOY 1965]. These indices were the most used in the north of Mediterranean region, while the DI index defined as able to quantify both dry and wet cycles [MORID et al. 2006; VAN ROOY 1965]. These indices were the most used in the north of Mediterranean region, while the DI index defined as able to quantify both dry and wet cycles [MORID et al. 2006], as well as SPI and may assessing droughts when used with many time steps (short term) in arid/semi-arid regions. The analysis of the study of BARUA et al. [2011] showed that SPI had the same raw score for the transparency criterion and were less transparent than PN or DI, with PN having the highest transparency score and was also found as the most irrelevant DI to other indices [MORID et al. 2012]. The RAI offers a higher degree of transparency and tractability and demands a lower degree of sophistication than the SPI with regard to the evaluation criteria for drought indices as proposed by KEYANTASH and DRACUP [2002]. In principle, the RAI may be calculated on the same time scales as the SPI and is similarly robust.

MATERIALS AND METHODS

STUDY AREA

The Tafna basin (Fig. 1) is a transboundary basin covering an area of 7245 km². The biggest part of its area is located in the Northwest of the Algerian territory (Wilaya of Tlemcen) and the upper part on the territory of Morocco. According to the new structure of hydro geological units in Algeria, the Tafna basin belongs to the entire Oranie–Chott–Chergui [BOUANANI 2004].

It extends between 1° and 2° west longitude and 34°5’ and 35°3’ north latitude [BOUANANI 2004] and consists of eight sub basins in which two are located upstream in the Moroccan territory (2007 km² representing around 27.7% of the total area) [KETROUCI et al. 2012]. The Tafna basin features very rugged terrain with an average and maximum altitude of 780, 1800 m a.m.s.l. (Fig. 1a) which dominates the regions of the plains of Maghnia, Hannaya and Sidi Abdelli in northern area of the basin. It has a 170 km long stream with its source in the Tlemcen Mountains, i.e., region of Sebdou and Isser Wadi and Maghnia region (Mouillah Wadi effluent from the Moroccan part) [BOUANANI 2004]. The geology of Tafna basin is divided into two zones: the upstream part characterizes by Jurassic rocks rich in limestone and dolomite, and the downstream part by Miocene marls covered by recent alluvium belonging to the Quaternary [TALEB et al. 2004]. The upper basin mainly occupies forests, sparse vegetation, and pasture, with irrigated crops occupying the rest [BOUANANI 2004]. The hydrographical network of the Tafna basin consists mainly by two river arteries: the Wadi Tafna in West and the Wadi Isser in the East that has its source in the Tlemcen Mountains. The mean annual rainfall is 469 mm, computed over a period of 66 years (1939–1940 to 2004–2005) [GHENDI et al. 2010]. The climate regime is characterized by a semi-arid Mediterranean climate with a relatively cold and rainy winter, with maxima in December, January and February and a hot and dry summer. The study area system is experience high spatial and temporal variability of total rainfall major land use and soil types of the study area [MIDDLE et al. 2010; 2013].

DATA AND METHODS

In the current research, historical records of the rainfall data were acquired from the National Agency of Hydraulic Resources (Fr. Agence Nationale des Ressources Hydriques – ANRH) for the period 1979–2011. The daily data were collected from nine climate stations (Sebdou, Beni Bahdel, Khemis, Hennaya, Djbel Chouachi, Chouly, Merbeh, Ouled Mimoun, and Sidi Benkhala) located in different parts of the Tafna basin, as shown in Table 1 and Figure 1b. The homogeneity test of Lee and Hehginian detected two significant break dates for an annual time scale in rainfall, i.e., in 1980 for Sebdou, Beni Bahdel, and Hennaya stations and the rest of the stations in 2007. For the single station Djbel Chouachi, a break date was revealed in 1999 with Pettit

Table 1. Rainfall station in the Tafna basin

<table>
<thead>
<tr>
<th>No.</th>
<th>Station</th>
<th>Code of station</th>
<th>Longitude (W)</th>
<th>Latitude (N)</th>
<th>Elevation (m a.s.l.)</th>
<th>Annual average rainfall for period 1979–2011 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sebdou</td>
<td>16-04-01</td>
<td>1°33'</td>
<td>34°65'</td>
<td>875</td>
<td>361.8</td>
</tr>
<tr>
<td>2</td>
<td>Beni Bahdel</td>
<td>16-04-03</td>
<td>1°51'</td>
<td>34°71'</td>
<td>666</td>
<td>400.4</td>
</tr>
<tr>
<td>3</td>
<td>Khemis</td>
<td>16-04-06</td>
<td>1°56'</td>
<td>34°64'</td>
<td>920</td>
<td>399.3</td>
</tr>
<tr>
<td>4</td>
<td>Hennaya</td>
<td>16-05-16</td>
<td>1°39'</td>
<td>34°92'</td>
<td>515</td>
<td>378.3</td>
</tr>
<tr>
<td>5</td>
<td>Djbel Chouachi</td>
<td>16-05-18</td>
<td>1°50'</td>
<td>34°94'</td>
<td>110</td>
<td>278.7</td>
</tr>
<tr>
<td>6</td>
<td>Chouly</td>
<td>16-06-01</td>
<td>1°14'</td>
<td>34°83'</td>
<td>700</td>
<td>393.9</td>
</tr>
<tr>
<td>7</td>
<td>Merbah</td>
<td>16-06-02</td>
<td>1°17'</td>
<td>34°79'</td>
<td>1 100</td>
<td>375.2</td>
</tr>
<tr>
<td>8</td>
<td>Ouled Mimoun</td>
<td>16-06-07</td>
<td>1°03'</td>
<td>34°90'</td>
<td>705</td>
<td>330.6</td>
</tr>
<tr>
<td>9</td>
<td>Sidi Benkhala</td>
<td>16-06-10</td>
<td>1°05'</td>
<td>35°03'</td>
<td>430</td>
<td>340.5</td>
</tr>
</tbody>
</table>

Source: own elaboration.
and Buishand tests for the time series are not homogeneous, whereas the trend test showed no significant trend at the same station, which can be explained by the multi breakpoint at the rainfall time series not indicating any increase or decrease of a rainfall trend. The stationarity test Jonckheere–Terpstra confirmed the results of no trend at the Djbel Chouachi station. The normality test of the Kolmogorov–Smirnov showed that the annual rainfall data are following a normal distribution only at the Sidi Benkhal station. Annual rainfall is fitting the normal distribution as per the Shapiro–Wilk test at Sebdou, Merbeh, Sidi Bouunkhala, and Ouled Mimoun stations. Monthly rainfall data do not follow a normal distribution for all stations according to both tests [Bougara et al. 2020].

The methodology applied in this study is based on four meteorological indices (standardized precipitation index – SPI, rainfall anomaly index – RAI, decile index – DI, and percent of normal index – PN) selected for drought monitoring in the Tafna Basin in order to:

1. Classify the frequency of the drought severity categories (or humidity) using a percentile approach for magnitude category thresholds method which enables to easily interpret the drought magnitude. It should be noted that drought classification system is flexible, and easy to incorporate in new technologies, and provide a consistent and replicable standard for drought classification based on the values of the drought indices for three-time scales (annual, seasonal, and monthly), where droughts are generally slow to emerge and slow to recede, and usually changes incrementally during an period, some region experience drought impacts for months or years, for this reason detecting of drought indices in varying durations have been considered, which being used to assess short- and long-term drought severity separately.

2. Determine the correlations between SPI and other indices (RAI, DI, PN), using the correlation coefficients of Pearson and Spearman. SPI is considered for analysing its correlation with other three indices because it is most often used as the measure in the drought analysis [Guttman 1998; Hayes et al. 1999], and most applied index to analyze meteorological drought in the northwest region of Algeria [Ajjim, Djedd 2018; Delloul et al. 2016; 2018]. This proves the applicability of the comparison of SPI with the rest of the indices that have not yet received much attention in this part of the areas a primary step in the analysis.

3. Investigate the relationship between the results of each meteorological drought index from all stations at a different time scale using the correlation coefficients of Pearson and Spearman to assess the sensitivity and robustness for each index.

4. Indicating the trend directions of the drought indices selected in the time series, using Mann–Kendall test, one of the most widely applied test, using Mann–Kendall test, one of the most widely applied test [Bari Abrighouei et al. 2011; Boudad et al. 2018; Deo 2011; Hänzel et al. 2016; Jain, Kumar 2012; Khazaazna et al. 2017; Kumar et al. 2019; Rahman et al. 2016] to detect whether the trend is upward or downward of the data during a time period while considering the level of statistical significance [Da Silva et al. 2015; Gelefa et al. 2018; Kis, Ay 2014; Mrad et al. 2018a].

METEOROLOGICAL DROUGHT INDICES

Standardized precipitation index (SPI)

SPI is a widely recognized tool for characterizing and monitoring meteorological droughts [McKee et al. 1993]. Positive SPI values demonstrate that greater than mean precipitation and negative values indicate less than mean precipitation. It is a simple index which allows equally checking of wet periods and the dry periods and is based on the long-term precipitation record (longer than 30 years) [Boudad et al. 2018; Edwards, McKee 1997]. The available long-term rainfall data is fitted to a probability distribution (e.g. gamma distribution) to calculate SPI, which is then transformed to a normal distribution so that the mean SPI period is zero [Jain et al. 2015; McKee et al. 1993]. The equations to calculate SPI are as follows, the rainfall data are calculated using the probability density function of the gamma distribution, which is defined as:

\[
g(x) = \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} \text{ for } x > 0
\]

where: \(\alpha\) is a shape parameter, \(\beta\) is a scale parameter and \(x\) is the rainfall amount, \(\beta\) and \(x > 0\) as:

\[
\alpha = \frac{1}{4A} \left(1 + \sqrt{1 + \frac{4A}{3}}\right) \text{ and } \beta = \frac{x}{\alpha}
\]

where: \(x\) represents the sample statistic, \(A\) the rainfall average as:
A comparative assessment of meteorological drought in the Tafna basin, Northwestern Algeria

\[
A = \ln(\bar{x}) - \frac{\sum \ln(x)}{n}
\]

(3)

\[
\Gamma(\alpha) = \int_0^{\infty} x^{\alpha-1}e^{-x} \, dx
\]

where: \(\Gamma(\alpha) \) is the gamma function, \(n \) is number of rainfall observations.

The obtained parameters are then used to find the cumulative probability function as:

\[
G(x) = \int_0^x g(x)dx = \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^x x^{\alpha-1}e^{-x/\beta} \, dx
\]

(4)

The rainfall dataset may contain zero values since the gamma distribution is undefined for zero rainfall, then the calculated cumulative probability will be zero. The gamma distribution is divided into 10 decile parts. The first decile value is the probability of zero rainfall.

The cumulative probability is then transformed to the standardized normal distribution random variable with mean zero and variance of one, which is the value of the SPI.

Percent of normal index (PN)

PN is a simple index to measure the rainfall deficit for a location. The value ‘normal’ of the index may be calculated for a month, a season or a year, and is considered to be 100%. Analyses using the percent of normal are very effective when applied for a single region or a single season. It is calculated by dividing actual precipitation (\(P \)) by normal precipitation and multiplying by 100% [DOGAN \textit{et al.} 2012; 2006; SHAHABFAR, ETZINGER 2013].

Rainfall time series should have at least 30 years’ worth of data for calculation of the normal period. The range of values for different drought indices are presented in Table 2.

Decile index (DI)

The decile index was developed by GIBBS and MAHER [1967]. Which is based on ranking the monthly rainfall from the long-term series to construct a cumulative frequency distribution. This distribution is divided into 10 decile parts. The first decile value is the lowest than 10%, while the second decile is between the lowest 10 and 20%, the two above deciles are determined as considerably below normal, and the deciles from 3 to 4 (from 20 to 40%) as below-normal rainfall, while the deciles from 5 to 6 (from 40 to 60%) as near-normal rainfall, and the deciles from 7 to 8 (from 60 to 80%) as above-normal rainfall and the deciles from 9 to 10 (from 80 to 100%) indicate above-normal rainfall [ABEFJAH \textit{et al.} 2014].

Rainfall anomaly index (RAI)

RAI was developed by VAN ROOY [1965]. It is based on ranking the rainfall value to calculate the positive and negative magnitude of the indices which are computed by using the mean of ten extremes. This index can be analysed on the frequency and intensity of the dry and rainy period [AL-TIMME, OSAMAH 2016]. The RAI offers a higher degree of transparency and a lower degree of complexity than the SPI with regard to the evaluation criteria for drought indices [KEYANTASH, DRACUP 2002; HANSEL \textit{et al.} 2016].

The function is defined as:

\[
RAI = 3 \frac{P - \bar{P}}{\bar{P}} \quad \text{if} \ P > \bar{P}
\]

(6)

\[
RAI = -3 \frac{P - \bar{P}}{\bar{P}} \quad \text{if} \ P < \bar{P}
\]

(7)

where: \(\bar{P} \) is the mean of the ten highest rainfall records for the time series of the study, \(P \) is the mean of the ten lowest rainfall records for the time series of the study, is the mean rainfall of the time series, and \(\bar{P} \) the rainfall for the specific year.

The classification based on the above meteorological four drought indices are given in Table 2.

TREND AND CORRELATION TEST ANALYSIS

The better identification and monitoring of the drought is to compare the correlation between several drought indices and how they respond to the drought categories during the time series of the study for different time steps. Therefore, to evaluate the dependability in determining the correlation between them, the Pearson coefficient and the Spearman’s rho correlation will be used, which are well known and widely used internationally. In

<table>
<thead>
<tr>
<th>State</th>
<th>Class description</th>
<th>SPI</th>
<th>PN</th>
<th>DI</th>
<th>RAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>extremely wet</td>
<td>≥2.0</td>
<td>–</td>
<td>1</td>
<td>≥3.00</td>
</tr>
<tr>
<td>2</td>
<td>very wet</td>
<td>[1.50; 1.99]</td>
<td>–</td>
<td>2</td>
<td>[2.00; 2.99]</td>
</tr>
<tr>
<td>3</td>
<td>moderately wet</td>
<td>[1.00; 1.49]</td>
<td>≥110</td>
<td>3</td>
<td>[1.00; 1.99]</td>
</tr>
<tr>
<td>4</td>
<td>normal</td>
<td>[–0.99; 0.99]</td>
<td>[80; 110]</td>
<td>[4; 7]</td>
<td>[–0.99; 0.99]</td>
</tr>
<tr>
<td>5</td>
<td>moderately dry</td>
<td>[–1.49; –1.00]</td>
<td>[55; 80]</td>
<td>8</td>
<td>[–1.99; –1.00]</td>
</tr>
<tr>
<td>6</td>
<td>severely dry</td>
<td>[–1.99; –1.50]</td>
<td>[40; 55]</td>
<td>9</td>
<td>[–2.99; –2.00]</td>
</tr>
<tr>
<td>7</td>
<td>extremely dry</td>
<td>≤–2.00</td>
<td>≤40</td>
<td>10</td>
<td>≤–3.00</td>
</tr>
</tbody>
</table>

Explanations: SPI = standardized precipitation index, PN = percent of normal index, DI = decile index, RAI = rainfall anomaly index.

order to describe the evolution of drought values, we performed the Mann–Kendall (MK) trend method, which indicates the rates of variation of the drought indices.

Mann–Kendall (MK) test

The non-parametric Mann–Kendall trend (MK) is the rank-based test [Sneyers 1975] used to assess the significance of a trend in hydro-meteorological variables in time series at different levels of statistical significance [Gocic, Trakovic 2013; Khezzazna et al. 2017]. The statistical significance of the trends at a significance level of \(p = 0.05 \), positive values of Mann–Kendall statistics indicates increasing trends while negative values show decreasing trends at a significance level [Filgueira et al. 2017; Khezzazna et al. 2017] it is not important to define if the trend is linear or not [Na Silva et al. 2015]. This trend detection method has advantages like non-assumption of any distribution form for the data; thus extreme values are acceptable [Bari Abarghouei et al. 2011; Hirsch et al. 1982; Rahman et al. 2016]. The correlation between two variables is termed as the Kendall’s correlation coefficient or Kendall statistics [Bari Abarghouei et al. 2011].

Pearson’s correlation

Pearson’s coefficient of correlation was described by Karl Pearson in 1896, the standard method of its calculation. He called this method the “product-moments” method (or the Galton function for the coefficient of correlation \(r \)). An important assumption in Pearson’s 1896 contribution is the normality of the variables analysed, which could be true only for quantitative variables. Pearson’s correlation coefficient is a measure of the strength of the linear relationship between two sets of data [Hauke, Kosowski 2011; Pearson 1896; 1900].

Spearman’s rho correlation

Spearman’s rank correlation coefficient is a nonparametric (distribution-free) rank statistic proposed as a measure of the strength of the association between two variables. Spearman’s coefficient is not a measure of the linear relationship between two variables. It is a measure of a monotone association, where it assesses how well an arbitrary monotonic function can describe the relationship between two variables, without making any assumptions about the frequency distribution of the variables. Unlike Pearson’s product-moment correlation coefficient, it does not require the assumption that the relationship between the variables is linear. In principle, Spearman’s rho coefficient \((r_s) \) is simply a case of Pearson’s product-moment coefficient in which the data are converted to ranks before calculating the coefficient [Hauke, Kosowski 2011; Spearman 1910].

Correlation analysis is often used in hydrology for presenting the relationships between the variables, and it gives predictions of observations yet to be made. The nonparametric method is very desirable because it does not require a rigidly defined class [Kaz 1987]. Coefficient values can range from +1 to −1, where +1 indicates a perfect positive relationship, −1 indicates a perfect negative relationship, and 0 indicates no relationship exists [Krause et al. 2005]. The high degree of correlation of value lies between ±0.50 and ±1.00 indicating a strong correlation. And medium correlation for values lies between ±0.30 and ±0.49, while small correlation for values lies beyond ±0.29.

RESULTS AND DISCUSSION

COMPARISON OF DROUGHT CATEGORIES

At annual scale, Figure 2 shows that PN detected the highest range of normal droughts categories approximately (from 30 to 50%) for Beni Bahdel, Sebdou, and Khemis stations, while the rest of the stations indicated similarity of ranges between moderate droughts, normal and moderate wet categories (from 15 to 20%). Extreme droughts categories range was found (100%) on a seasonal time scale for Sebdou station. For the rest of the stations, the percentage of moderately wet categories indicated the highest range approximately (from 25 to 40%) compared to other categories. At monthly scale, extreme dry and moderate wet categories were found in similar range (35%).

On an annual scale, RAI detected a range of normal categories (30%) for Djibel Chouachi, several droughts approximately (from 20 to 30%) for Ouled Mmeoun, Sidi Benkhala, Chouly and Khemis, and moderate droughts (20%) for the other stations. Extreme, several droughts and normal range were found approximately (from 15 to 20%) on a seasonal time scale for all stations, in addition to observation of a significant range of several droughts categories approximately (from 10 to 20%) for Djibel Chouachi, Henaya, and Sidi Benkhala. Extreme, several droughts, and normal categories were found similarity ranges with approximation (from 15 to 20%) for all stations, expect Djibel Chouachi, which has the highest range of extreme droughts with (30%) on a monthly scale.

SPI and DI indices detected higher ranges of only normal categories for all stations and on all time scales, whereas SPI detected approximately range (from 65 to 75%). DI indicated approximately ranges 40%, from 40 to 45%, from 30 to 40% on annual, seasonal, and monthly time scale respectively.

As concluded: SPI and DI have responded in more consistent on all time scales for all stations. SPI has the most similar response to DI (normal categories), although DI underestimated the range of normal categories than SPI did on all time scale, where SPI has a much large rate of “normal categories”, while the rest of the categories of drought have less rate in SPI compared to DI. This indicates high sensitivity on the part of DI to rainfall amount, whereas the SPI is the worst in detecting the extreme, severe drought (≤5%).

PN and RAI resulted in values indicating more drought categories than SPI and DI, where they were able to detect gradual categories in droughts that cannot be detected by the SPI and DI. This analysis indicates that the application of RAI and PN allowed leading to a detailed assessment of the drought situation in the study area. Extreme droughts had also been underestimated by PN and RAI on seasonal and monthly scale but underestimated on annual scale.

METEOROLOGICAL INDICES TEMPORAL EVOLUTION

The four indices (SPI, RAI, DI, PN) at the annual time scale were compared and displayed in Figure 3, which contribute in detecting the dry and wet years in time series according to the position of the indices values in range category of drought classification that is defined in Table 2. The variance of two indices SPI and RAI is characterized by the same consistency change in wet and dry periods, it can be seen from the Figure 3,
Fig. 2. Drought categories percentage for standardized precipitation index (SP), rainfall anomaly index (RAI), decile index (DI), and percent of normal index (PN) for different time scale (annual, seasonal, monthly); source: own study
that the SPI time series of the curve is close to that of RAI. The period between 2000 and 2004 and 2008 and 2011 shows a recovery from drought. The highest values of the SPI, RAI, and PN are 3, 8, 230 respectively in 2008 correspond Sidi Benkhala station for SPI and RAI and Khemis station for PN which representing the “wet extremes” categories and the lowest values are –3, –6, 36 respectively in 1982 correspond Hennaya station, which representing the “dry extremes”. While DI results showed that the highest and the lowest values (10, 1 respectively) on the annual scale are the same for some stations (Sidi Benkhala, Ouled Mimoun, Djbel Chouachi, Hennaya), which representing the “wet extremes” and “dry extremes” respectively.

The results of SPI and RAI showed that the estimates of droughts experienced a difference in terms of values, however, they are consistent in duration in terms of the start and end of the drought.

In the early 2000s, all stations showed mostly positive SPI, RAI, PN, and DI values which are often greater than 2, 4, 152, 10 respectively with the exception years 2004, 2006, and 2007. Negative values are less than –2, –4, 55, 1 respectively observed between 1981 and 1999. The year 1982 was one of the driest years, and 2008 was the wettest year in the study area.

RELATIONSHIP BETWEEN SPI AND RAI, DI, PN

In Table 3, the relationship between SPI and the indices RAI, DI and, PN were determined with the coefficient of Pearson and Spearman correlation tests on the different time scale (annual, seasonal, monthly). The results showed that the relationship for the SPI versus the RAI, DI, and PN are highly correlated (>0.6) for all time scale. The relationship has a strong positive correlation on an annual scale (≥0.94) and even higher with Spearman correlation tests (≥0.99) for all stations.

The highest Pearson correlation (0.99) was observed in several stations on annual scale, and the lowest (0.61) was observed between SPI and PN in Djbel Chouachi on a monthly scale.

The highest Spearman correlation (1.00) was observed between SPI and the indices PN and RAI for all stations on annual scale, and the lowest (0.59) was observed between SPI and PN in Djbel Chouachi on a monthly scale. For both correlation tests, RAI showed that it has the greatest correlation with SPI on all time scale. Overall, it is noted that the correlation of SPI with other indices increases with the long term in the time step and decrease with the short term.

Star diagram use to represent the relationship between variables to a central idea, and compare multiple items (correlation coefficient between indices) against multiple criteria (time steps). Figure 4 demonstrates the visualization results of Table 3, it is showed with Pearson correlation that Khemis station has the lowest correlation between SPI and each of the other indices at annual and seasonal scale except the correlation between SPI and DI on annual scale and between the SPI and RAI on seasonal scale, on another hand, the correlation between SPI and other indices was the lowest at Djbel Chouachi. While the lowest Spearman’s correlation between SPI and each one of the indices was indicated at Khemis station at all-time scale except between the indices SPI, PN and DI on the monthly scale and RAI on the annual scale.
The higher correlation coefficient between 0.99 and 1 for the indices and the stations and time scales signifies that these indices are well suited and adapted in the study area. The close similarity in coefficient values in different stations can be due to the indices values, which include zero or a small number for the entire time period, that can possibly be attributed to the consistent correlation may be due to similarity of hydrological conditions of area surrounding by each station.

Table 3. The correlation coefficients between standardized precipitation index (SPI) and decile index (DI), percent of normal index (PN), and rainfall anomaly index (RAI), respectively at different time scale

<table>
<thead>
<tr>
<th>Correlation test</th>
<th>Station</th>
<th>Annual</th>
<th>Monthly</th>
<th>Seasonal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SPI vs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI</td>
<td>PN</td>
<td>RAI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson</td>
<td>Beni Bahdel</td>
<td>0.97</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Sebdou</td>
<td>0.96</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Khemis</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>DjbelChouachi</td>
<td>0.99</td>
<td>0.98</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Hennaya</td>
<td>0.95</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Chouly</td>
<td>0.96</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Merbeh</td>
<td>0.94</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Ouled Mimoun</td>
<td>0.97</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Sidi Benkhala</td>
<td>0.95</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Sperarman’s rho	Beni Bahdel	0.99	1	1	0.89	0.86	0.93	0.98	0.96	0.99
	Sebdou	0.99	1	1	0.96	0.94	0.98	0.99	0.98	0.99
	Khemis	0.99	1	1	0.7	0.66	0.71	0.8	0.78	0.81
	DjbelChouachi	0.99	1	1	0.64	0.59	0.75	0.96	0.87	0.95
	Hennaya	0.99	1	1	0.93	0.89	0.95	0.99	0.97	0.99
	Chouly	0.99	1	1	0.92	0.89	0.94	0.99	0.99	0.99
	Merbeh	0.99	1	1	0.91	0.89	0.94	0.98	0.99	0.99
	Ouled Mimoun	0.99	1	1	0.81	0.78	0.86	0.99	0.98	0.99
	Sidi Benkhala	0.99	1	1	0.91	0.84	0.91	0.99	0.95	0.99

Explanations: SPI, RAI, DI and PN as in Tab. 2. Source: own study.

The higher correlation coefficient between 0.99 and 1 for the indices and the stations and time scales signifies that these indices are well suited and adapted in the study area. The close similarity in coefficient values in different stations can be due to the indices values, which include zero or a small number for the entire time period, that can possibly be attributed to the consistent correlation may be due to similarity of hydrological conditions of area surrounding by each station.

COMPARATIVE EVALUATION OF DROUGHT INDICES

The Figures 5, 6, and 7 represented the average of SPI, RAI, DI, and PN for annual, seasonal, and monthly time steps compared with average rainfall on each time scale.

On an annual scale, the analysis of the results indicated that extremely dry category was detected in 1982 with RAI, DI and, PN, where had been a significant decrease in annual average
rainfall, in addition to 1987 and 1999 that were also shown as extremely dry with RAI, where the period between 1984 and 1999 experienced a fluctuation in the deficit rainfall time series. On seasonal and monthly scale, the extremely dry category were determined with RAI in the spring of 1982 (Fig. 6), and in April of 1983, respectively due to a decrease of rainfall in this season parallel to his months (April) which is experienced this region. While the severely dry category was determined in 1987, 1999 with SPI and DI. This category on the seasonal scale was detected in the spring of 1982 with DI and PN, and in the spring (1987, 1999), with SPI, DI, and PN, where this season of these years showed mostly the deficit in seasonal rainfall. As well as this category was indicated on a monthly scale in March of 1983 and May of 1983 with RAI, and February of 1983 to May of 1983 with
PN, whereas April of 1983 with DI, and March and April of the two years of 1987 and 1999 with the DI, and PN.

The moderate dry category was indicated in 1987, 1999, and 2007 with PN, and the same index determined the year 1995 as the moderate wet category. Otherwise, this year was represented under the extreme wet category with RAI, and as very wet with SPI and DI due to the excess of rainfall in this year.

The category of extreme wet was appropriately detected in 2008 with all four indices, where the highest rainfall occurred throughout the study period. The period between 2000 and 2011 defined a slight raising of average rainfall (except 2004, and 2007).

The same category was indicated on a seasonal scale in the autumn of 2008 with RAI, DI, and PN, it is seen and confirmed also as extremely wet in the months from September of 2008 to November of 2008. While SPI defined this season as severely wet as well as the month of October of 2008.

Overall, all indices indicated similar droughts categories when it was the highest and lowest of rainfall on annual time scale. It is noted that RAI was more appropriate compared to other indices in the detection of drought in the long term and short term. When the average rainfall was lower than normal, the RAI index showed an extreme dry situation, especially in 1987, 1999 and the worst dry period was reported in 1982. The deficit and fluctuation of rainfall detected the drought situation, and that showed a positive relationship between the drought indices and average rainfall.

Several studies have indicated the same results in line with our research [ADJIM, DJEDID 2018; HAMLAOUI-MOULAI et al. 2013; HAMMAR et al. 2014; KHEZAZNA et al. 2017; MEDJEJAB, HENIA 2005], as these studies showed that the 1980s experienced a decrease in the rainfall, and considered as a dry sequence, it was observed mostly that drought index is often less than –1. While the period from 1999 to 2011 of the study was considered as a wet sequence with a drought index range from 0.06 to 0.85, and it was pointed out that 2008 as the mostly wettest in this period that was confirmed with the studies that was mentioned above.

CORRELATIONS BETWEEN DROUGHT INDICES

In order to assess the sensitivity and robustness of the indices at a different time scale, we adopt the correlation coefficient method for choosing the better relationship between the one drought index for different stations (the study stations). For this section, the correlation coefficient values are obtained by taking the average of the correlation coefficient (Pearson, Spermman’s rho) to obtain one value for each index from all the stations at different time scales (annual, seasonal, monthly) to consider which time steps of the indices may have better correlation coefficients. The obtained results of SPI for Pearson correlation between different stations had the best correlation on the time steps of seasonal and monthly, the average coefficients for these time steps were (0.82, 0.78 respectively). While on annual scale were around 0.78. Whereas DI, PN were significantly higher (0.8). Unlike Sperman’s rho correlation showed that RAI have the best correlation on both seasonal and monthly scale (0.8, 0.78 respectively), and the similar results with all indices (0.77) except DI (0.76) on annual scale. The results of correlation test between drought indices showed in Table 4 and Figure 8.

In conclusion, SPI and RAI were highly correlated on short-term (monthly) and medium (seasonal) is better suited for understanding and assessment of drought analysis in the study area, they were able to detect the period of drought which they found reasonable results of the drought performance reflecting

Table 4. Average correlation coefficients of indices from all stations with different time scale

<table>
<thead>
<tr>
<th>Correlation test</th>
<th>Annual</th>
<th>Seasonal</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPI</td>
<td>RAI</td>
<td>DI</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>0.77</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>0.79</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>0.74</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Explanations: SPI, RAI, DI and PN as in Tab. 2.

Source: own elaboration

![Average of Pearson correlation](image1.png)

Fig. 8. Average correlations of all indices with a different time scale from all stations; SPI, RAI, DI and PN as in Tab. 2; source: own study
the real situation of climate for this area without underestimated or overestimated the drought categories and their period.

Almost all indices reached a high correlation between the stations (0.82) may due to the fact that drought is strongly affected by rainfall, the low variation of rainfall amount led to this similarity of the strong correlation where the geographical coverage (distance) between the stations was small.

TRENDS ANALYSIS

The results of trend analysis Mann–Kendall (MK) test on different time series of drought indices for a period of 1979–2011 are presented in Table 5. Overall, all the indices exhibited no considerably significant trend at the various stations on Annual and Seasonal scale except Djebel Chouachi station that were recorded significant positive trend (0.13 at \(p = 0.05 \) level of statistical significance) on seasonal scale for RAI, and DI. Whereas, for monthly scale, the trend provided by indices were significantly positive in Djebel Chouachi and Merbeh station, and the same result for Sidi Benkhala station except RAI index that showed no significant trend, while the stations Khemis, Chouly, and Ouled Mimoun detected positive trend with one of this indices SPI, DI, and RAI respectively. For the rest of stations showed positive but not significant trend, and indicated almost similar positive values for all stations on Monthly scale, that display wet event means that the positive of the indices are considerable in the sequence of the indices values.

The positive trend of meteorological indices in monthly scale may demonstrated by the positive trend of rainfall in this region [BENDJEMA et al. 2019; BOUGARA et al. 2020; DONAT et al. 2014; DUNKELOH, JACOBEIT 2003; PHILANDRAS et al. 2011; TRAMBLAY et al. 2012]. The study area experienced a significance raising of rainfall during the period 2000–2011 which was due the North Atlantic Oscillation (NAO) index describing the NAO phenomenon. This phenomenon is a pressure difference between Azores and Iceland, and its negative correlation with rainfall [LOPEZ, FRANCES 2010], and that affect West Africa in the Mediterranean region [NOUACEUR et al. 2017]. The negative phase of NAO index has impacts on increasing of rainfall in north Africa [BRANDI-MARTE et al. 2011; HAMLAOUI-MOULAI et al. 2013; MEDI et al. 2010], the probability for wet months (October–March) is around 42%–52% for a negative NAO [MUÑOZ-DÍAZ, RODRIGO 2003; PHILANDRAS et al. 2011]. While from the middle of 1970 to 2000, the NAO represented a positive phase caused a decreasing trend of rainfall [HAMLAOUI-MOULAI et al. 2013], it has been confirmed with our study results, where the meteorological indices indicated a drought situation between 1980 and 1999, and it was strong in 1982 for the study period. Where the study of ACHOUR et al. [2020] pointed out that seven plains of north-western Algeria are affected by the drought based on SPI at different time scales using artificial neural network (ANN) model, and it changes according to the time scale, depicts identified dry trend in terms of severity and duration rising from east to west especially after 1981, and they suggested ANN-based drought forecast model can be conveniently adopted to establish with two months ahead adequate irrigation schedules in case of water stress and for optimizing agricultural production, while the study of HABIBI et al. [2018] using same index with applying Markov chains to identify consecutive drought years of two years, it has shown alternating wet and dry sequences with more dominant long periods of wet years (1984–1992), and the period 2006–2010 was again wetter than normal as was confirmed with current research.

CONCLUSIONS

The main purpose of this study was a comparative assessment of drought for the Tafna basin and allowed discussion on the performance of the indices during the period 1979–2011 for nine rainfall stations. The analysis of meteorological indices have shown that the standardized precipitation index (SPI) and decile index (DI) have performed similar responses to the drought categories. Where the similarity of data level (rainfall input), and the simplicity of calculations of these indices led to removing the difference between the indices. Where rainfall anomaly index (RAI) and percent of normal index (PN) were found to be more able to detect more drought categories and describe the drought conditions well compared with the SPI and DI. All indices

Table 5. Mann–Kendall test results of all indices at all stations in different time sale

<table>
<thead>
<tr>
<th>Station</th>
<th>Annual</th>
<th>Seasonal</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPI</td>
<td>DI</td>
<td>PN</td>
</tr>
<tr>
<td>Beni Bahdel</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Sebdou</td>
<td>−0.03</td>
<td>−0.01</td>
<td>−0.03</td>
</tr>
<tr>
<td>Khemis</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>Djebel Chouachi</td>
<td>0.22</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>Hennaya</td>
<td>0.03</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>Chouly</td>
<td>0.05</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Merbeh</td>
<td>0.16</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>Ouled Mimoun</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Sidi Benkhala</td>
<td>0.07</td>
<td>0.05</td>
<td>0.07</td>
</tr>
</tbody>
</table>

* if trend at ≤0.05 level of significance.

Source: own study.
indicated similar categories of droughts when it was the highest and lowest of rainfall, where may help providing a figure of average rainfall involve the average indices for each scale better identification and characteristics analyse for drought.

The best correlation for the four indices at different time scales reflected the similarity between the durations of drought and well adapted to the study area. SPI is recommended for use in comparison studies since it has good correlations with various time steps of other indices.

Tafna basin was characterized by normal drought on study time period. However the meteorological indices determined extreme drought during 1982. While the extremely wettest was in 2008 during the wet period 2000–2011.

The drought indices considered in this study are based on only rainfall and might tend to underestimate the real drought risk. Thus it should be evaluated using indices that include temperature and evapotranspiration, where the rising of the temperatures potentially increases evapotranspiration rates and may aggravate drought conditions.

The results of trends based on the Mann–Kendall test showed generally no tendency of the indices series on the annual and seasonal scale except Djbel Chouachi station which has an upward trend with RAI, DI on a seasonal scale. On the other hand, the significantly positive trend in the indices was mostly detected on the monthly scale.

The assessment of the influence of North Atlantic Oscillation (NAO) on drought revealed that the dry and wet events during the period of the study are associated with the positive or negative phase of NAO, where the positive phase of NAO matched with the dry period 1980–1999, and the negative phase with the wet period 2000–2011. According to the drought trends and the percentile of categories, the water resource management strategies should be adjusted, especially in the rainfall seasons (September–May months), where the deficit of water resources may affect agricultural activities in semi-arid regions. It is noted that the drought trend basically related to rainfall trends. Focusing on these trends is inevitable during the decision-making of strategies for water resources related to agricultural production.

ACKNOWLEDGMENTS

The authors would like to thank the German Federal Ministry of Education and Research (BMBF) for funding this research in the frame of Water and Energy Security in Africa (WESA) Project (grant number: 01DG16010C). The authors are also thankful to the National Agency of Hydraulic Resources (ANRH) of Algeria for providing the station rainfall data. They would also like to extend their gratitude to the Pan African University Institute of Water and Energy Sciences (PAUWES), Abou Bakr Belkaid University of Tlemcen and Center for Development Research (ZEF) at University of Bonn for their support in conducting this research.

REFERENCES

