Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-8e5edfae-ee9a-424a-8d86-1247fae0ceb2

Czasopismo

Archives of Metallurgy and Materials

Tytuł artykułu

The Erosion Resistance and Microstructure Evaluation of Laser Surface Alloyed Sintered Stainless Steels

Autorzy Brytan, Z. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The sintered stainless steels of different microstructures (austenitic, ferritic and duplex) were laser surface alloyed with hard powders (SiC, Si3N4) and elemental alloying powders (Cr, FeCr, FeNi) to obtain a complex steel microstructure of improved properties. Laser surface alloying (LSA) involved different strategies of powder placing: the direct powder feeding to the molten metal pool and filling grooves machined on the sample surface by powder, and then laser surface melting. Obtained microstructures were characterised and summarised, basing on LOM, SEM and XRD analysis. The links between base material properties, like superficial hardness and microhardness, derived microstructures and erosion resistance was described. The LSA conditions and alloying powder placement strategies on erosion resistance was evaluated. The erosion wear is lower for Cr, FeCr, FeNi laser alloying, where powders were dissolved in the steel microstructure, and hard phases were not precipitated. Precipitations of hard phases (carbides, silicides, martensite formation) reduce erosion resistance of SiC alloyed stainless steel. The LSA with Si3N4works better due to lack of precipitates and formation of a soft and ductile austenitic microstructure. The erosion wear at the impingement angle of 90° is high for hard and therefore brittle surface layers obtained as a result of alloying by hard particles (SiC, Si3N4). The softer and ductile austenitic stainless steel resist better than harder ferritic and duplex stainless steel material at studied erodent im pingement angle.
Słowa kluczowe
EN sintered stainless steel   duplex   laser surface alloying   erosion resistance  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2018
Tom Vol. 63, iss. 4
Strony 2039--2049
Opis fizyczny Bibliogr. 28 poz., fot., rys., tab., wykr.
Twórcy
autor Brytan, Z.
  • Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland, zbigniew.brytan@polsl.pl
Bibliografia
[1] L. A. Dobrzanski, T. Tanski, A. D. Dobrzanska-Danikiewicz, E. Jonda, M. Bonek, A. Drygala, Laser Surface Engineering: Processes And Applications, Edited by: Lawrence J.; Waugh, DG, Book Series: Woodhead Publishing Series in Electronic and Optical Materials 65, 3 (2015).
[2] J. M. Dutta, I. Manna, Laser processing of materials, Sadhana-Acad. P. Eng. S. 28, Parts 3, 495, June/August 2003.
[3] J. C. Betts, J. Mater. Process. Tech. 209, 5229 (2009).
[4] F. Laroudie, C. Tassin, M. Pons, J. Mater. Sci. 30, (1995) 3652.
[5] D. Zhang, X. Zhang, Surface Coat. Tech. 190, 212 (2005).
[6] J. M. Dutta, I. Manna, Mater. Sci. Eng. A 267, 50 (1999).
[7] C. T. Kwok , F. T. Cheng, H. C. Man, Mater. Sci. Eng. A 290, 55 (2000).
[8] C. T. Kwok, H. C. Man, F. T. Cheng, Surface Coat. Tech. 99, 295 (1998).
[9] S. Zherebtsov, K. Meakawa, T. Hayashi, M. Futakawa, JSME Int. J. Series A, 48, 4, 292 (2005).
[10] M. U. Kamachi, K. R. Ningshen, S. Ganesh, P. Nath, A. K. Khatak, HS. Baldevraj, Mat. Sci. Tech. 22, 10, 1185 (2006).
[11] Q. Y. Pan, W. D. Huang, R. G. Song, Y. H Zhou, G. L. Zhang, Surf. and Coat. Technol. 102, 245 (1998).
[12] C. Carboni, P. Peyre, G. Beranger, C. Lemaitre, J. Mater. Sci. 37, 3715 (2002).
[13] A. Viswanathana, D. Sastikumar P. Rajarajan, Harish Kumar, A. K. Nath, Opt. Laser Technol. 39, 1504 (2007).
[14] A. Conde, I. Garcia, J. Damborenea, Corrosion Sci. 43, 817 (2001).
[15] J. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application, Butterworth-Heinemann, 2005.
[16] P. Li, G.F. Sun, W. Zhang, W. X. Liuw, Y. K. Zhang, M. K. Zhang, The Chinese Journal of Nonferrous Metals 22 (8), 2253 (2012).
[17] D. Zhang, X. Zhang, Surf. Coat. Tech. 190, 212-217 (2005).
[18] N. N. Tshilwane, J. W. van der Merwe, Surf. Coat. Tech. 347, 414 (2018).
[19] X. Tong, M.J. Dai, Z. H. Zhang, Appl. Surf. Sci. 271, 15, 373 (2013).
[20] P. H. Lailatul, M. A. Maleque, Proc. Eng. 184, 737 (2017).
[21] J. Yao, L. Wang, Q. Zhang, F. Kong, Ch. Lou, Z. Chen, Opt. Laser Technol. 40, 838 (2008)
[22] Z. Brytan, M. Bonek, L. A. Dobrzański, W. Pakieła, Adv. Mat. Res. 291-294, 1425 (2011).
[23] Z. Brytan, L. A. Dobrzański, W. Pakieła, J. Achiev. Mater. Manuf. Eng. 47, 1, 42 (2011)
[24] Z. Brytan, L. A. Dobrzański W. Pakieła, Arch. Mater. Sci. Eng. 50, 1, 43. (2011).
[25] Z. Brytan, M. Bonek, L. A. Dobrzański, J. Achiev. Mater. Manuf. Eng. 40, 1, 70 (2010).
[26] Z. Brytan, Proceedings of Asia International Conference on Tribology 2018, September 2018, red. Mohd Fadzli Bin Abdollah, Malaysian Tribology Society, 376.
[27] J. N. Dupont, C. S. Kusko, Technical Note: Martensite Formation in Austenitic/Ferritic Dissimilar Alloy Welds, 51, Weld J, February 2007.
[28] M. Patel, D. Patel, S. Sekar, P. B. Tailor, P. V. Ramana, Proc. Tech. 23, 288 (2016).
Uwagi
EN This publication was financed by the Ministry of Science and Higher education of Poland as the statutory financial grant of the Faculty of Mechanical Engineering SUT.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-8e5edfae-ee9a-424a-8d86-1247fae0ceb2
Identyfikatory
DOI 10.24425/amm.2018.125141