Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-8e54a5bf-96dc-4a7a-b905-6dd2dc1d034e

Czasopismo

Mining Science

Tytuł artykułu

Evaluation of seismic hazard using tectonic fault data: case of Beni-Chougrane Mountains (Western Algeria)

Autorzy Refas, Soraya  Safa, Aissa  Zaagane, Mansour  Souidi, Zahera  Hamimed, Abderahmane 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In the world, people are increasingly exposed to natural hazards such as earthquakes. To this end, seismic risk mapping remains an essential topic of study in order to minimize their destructive effects. These maps are needed for both seismic risk management and for the design of infrastructure. The challenge is to take into account local information provided by seismic sources (historical seismicity) as well as information related to active tectonic faults. In this article, we calculated the seismic risk in the Mascara Mountains (western Algeria) using the geometric characteristic of known faults. This study is based on an important collection of a tectonic database of these faults (Nature, geometry and geological context). This information is relevant for their seismic potential. Indeed, by including these formations we tried to compute the seismic risk this region characterized by weak seismicity. Our results show more or less alarming facts. Indeed, the magnitude values calculated are between 4.85 and 7.25, whereas the magnitudes obtained by experimental seismicity do not exceed 6 on the Richter scale. The values of the maximum ground acceleration (PGA) are between 0.03 and 0.28 g. These results were compared with assessments made on the basis of historical seismicity; the maximum values obtained do not exceed 0.2 g. The higher values of magnitude calculated from the active faults is due to: (i) the nature of the faults (inverse, normal and strike slip), (ii) the geometry (length and depth) and (iii) that some of these faults may have an aseismic character.
Słowa kluczowe
EN earthquake   magnitude   peak ground acceleration   active fault   Mascara region  
Wydawca Wydział Geoinżynierii, Górnictwa i Geologii, Instytut Górnictwa Politechniki Wrocławskiej
Czasopismo Mining Science
Rocznik 2019
Tom Vol. 26
Strony 123--145
Opis fizyczny Bibliogr. 58 poz., rys., tab.
Twórcy
autor Refas, Soraya
  • Research Laboratory of Biological Systems and Geomatics (LRSBG), University of Mascara, Mascara, Algeria, soria_r5@yahoo.fr
autor Safa, Aissa
  • Laboratory of Hydrogeology, Mohamed Ben Ahmed, University,Oran-2, Oran, Algeria
autor Zaagane, Mansour
  • Research Laboratory of Biological Systems and Geomatics (LRSBG), University of Mascara, Mascara, Algeria
autor Souidi, Zahera
  • Research Laboratory of Biological Systems and Geomatics (LRSBG), University of Mascara, Mascara, Algeria
autor Hamimed, Abderahmane
  • Research Laboratory of Biological Systems and Geomatics (LRSBG), University of Mascara, Mascara, Algeria
Bibliografia
AMBRASEYS N.N., 1995, The prediction of earthquake peak ground acceleration in Europe, Earthquake Engineering and Structural Dynamics, 24 (4), 467–490.
AMBRASEYS N.N., Jackson J.A., 1998, Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region, Geophys. J. Int., 133 (2), 390–406.
ANDERSON R.V., 1936, Geology in the coastal atlas of western Algeria, Memoir of the Geological Society of America, New York, 4, 1–450.
AYADI A., OUSADOU-AYADI F., BOUROUIS S., BENHALLOU H., 2002, Seismotectonics and seismic quietness of the Oranie region (Western Algeria), The Mascara earthquake of August 18th, 1994, Mw = 5.7, Ms = 6.0, J. Seismol., 6, 13–23.
BENOUAR D., AOUDIA A., MAOUCHE S., MEGHRAOUI M., 1994, The 18 August 1994 Mascara (Algeria) earthquake, a quick-look report, Terra Nova, 6, 634–638.
BEZZEGHOUD M., BUFORN E., 1999, Source parameters of the 1992 Melilla (Spain, Mw = 4.8), 1994 Alhoceima (Morocco, Mw = 5.8), and 1994 Mascara (Algeria, Mw = 5.7) earthquakes and seismotectonic implications, Bulletin of the Seismological Society of America, 89 (2), 359–372.
BEZZEGHOUD M., AYADI A., SEBAÏ A., AÏT-MESSAOUD M., MOKRANE A., BENHALLOU H., 1996, Seismicity of Algeria between 1365 and 1989: Map of maximum observed intensities (MOI), Avancesen Geofisica y Geodesia, 1, 107–114.
CAMPBELL K.W., 1988, The Whittier Narrows, California earthquake of October 1, 1987 – preliminary analysis of peak horizontal acceleration, Earthquake Spectra, 4 (1), 115–137.
CAMPBELL K.W., 1989, The dependence of peak horizontal acceleration on magnitude, distance, and site eects for small-magnitude earthquakes in California and eastern North America, Bulletin of the Seismological Society of America, 79 (5), 1311–1346.
CAMPBELL K.W., 1981, Near-Source Attenuation of Peak Horizontal Acceleration, B. Seism. Soc. Am., 71 (6), 2039–2070.
CAMPBELL K.W., 1997, Empiritical near source attenuation relationship of horizontal and vertical component of peak ground acceleration, peak ground velocity and pseudo absolute acceleration response spectra, Seismo. Research Letters, 68 (1).
CORNELL C.A., 1968, Engineering seismic risk analysis, Bulletin of the Seismological Society of America, 58 (5), 1583–1606.
DALLONI M., 1936, Carte géologique de Mascara, Service de la carte géologique de l’Algérie, Mascara – 212.
DELTEIL J., 1974, Tectonique de la chaîne alpine en Algérie d’après l’étude du Tell oranais oriental (Monts de la Mina, Béni-Chougrane, Dahra), Thèse Doct. es Sciences, Univ. Nice, p. 294.
DOWRICK D.J., Rhoades D.A., 2004. Relations between earthquake magnitude and fault rupturę dimensions: How regionally variable are they?, Bulletin of the Seismological Society of America, 94 (3), 776–788.
ESTEVA L., ROSENBLUETH E., 1964, Espectros de temblores a distancias moderadas y grandes, Boletin Sociedad Mexicana de Ingenieria Sesmica, 2 (1), 1–18.
Etude hydrogéologique quantitative du plateau de Mascara, 1969, (2ème rapport): Estimation des potentialités en eau/SES. – Alger: Service des Etudes Scientifiques, BA.
Global CMT Catalog Search, the 18 th mascara earthquake (http://www.globalcmt.org/CMTsearch.html).
HADJI R., BOUMAZBEUR A., LIMANI Y., BAGHEM M., CHOUABI A., 2013, Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: A case study of Souk Ahras region, NE Algeria, Quaternary International, 302, 224–237.
HADJI R., RAÏS K., GADRI L., CHOUABI A., HAMED Y., 2017, Slope failures characteristics and slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled Driss and Machroha municipalities, Northeastern of Algeria, Arabian Journal for Science and Engineering, 42, 281–300.
HANKS T.C., KANAMORI H., 1979, A moment magnitude scale, Journal of Geophysical Research, Vol. 82, 2981–2987.
HARBI A., BENHALLOU H., 2006, Evaluation de l’Aléa Sismique en Algérie du Nord par la Modélisation de l’Input Sismique dans les Zones Urbaines et l’Etablissement d’un Catalogue (Doctoral dissertation).
IDRISS I.M., 1985, Evaluating seismic risk in engineering practice, p. 255–320, [in:] Proceeding of the 11th International conference on soil mechanics and foundation engineering, San Francisco, 12–16 août 1985, A.A. Balkema, Rotterdam, Vol. 1, 390 p.
KARIM Z., HADJI R., HAMED Y., 2018, GIS-Based Approaches for the Landslide Susceptibility Prediction in Setif Region (NE Algeria), Geotechnical and Geological Engineering, 37, 359, https://doi.org/10.1007/s10706-018-0615-7.
MAHDADI F., BOUMEZBEUR A., HADJI R., KANUNGO D.P., ZAHRI F., 2018, GIS-based landslide susceptibility assessment using statistical models: a case study from Souk Ahras province, NE Algeria, Arabian Journal of Geosciences, 11 (17), 476.
MANCHAR N., BENABBAS C., HADJI R., BOUAICHA F., GRECU F., 2018, Landslide Susceptibility Assessment in Constantine Region (NE Algeria) by Means of Statistical Models, Studia Geotechnica et Mechanica, 40 (3), 208–219.
MARINONI O., 2003, Improving geological models using a combined ordinary-indicator kriging approach, Engineering Geology, 69 (1), 37–45.
MCGUIRE R.K., 1976, FORTRAN computer program for seismic risk analysis, U.S. Geol. Survey open – File Rept., 76–67.
MCKENZIE D., 1972, Active Tectonics of the Mediterranean Dan. Publication: Geophysical Journal, Vol. 30, Issue 2, pp. 109–185, Publication Date: 12/1972, Origin: CROSSREF, DOI: 10.1111/j.1365-246X.1972.
MEGHRAOUI M., 1982, Etude néotectonique de la région NE d’El-Asnam: relation avec le séisme du 10 octobre 1980 (Doctoral dissertation, Thèse 3eme Cycle, University of Paris, 7, 210.
MEGHRAOUI M., PONDRELLI S., 2013, Active faulting and transpression tectonics along the plate boundary in North Africa, Annals of Geophysics, 55 (5).
MEGHRAOUI M., 1988, Géologie des zones sismiques du Nord de l’Algérie: Paléosismologie, tectonique active et synthèse sismotectonique (Doctoral dissertation, Paris 11).
MEGHRAOUI M., CISTERNAS A., PHILIP H., 1986, Seismotectonics of the lower Cheliff basin: structural background of the El Asnam (Algeria) earthquake, Tectonics, 5 (6), 809–836.
MONTILLA J.A.P., DE GALDEANO C.S., CASADO C.L., 2003, Use of active fault data versus seismicity data in the evaluation of seismic hazard in the Granada Basin (Southern Spain), Bulletin of the Seismological Society of America, 93 (4), 1670–1678.
MONTILLA J.A.P., DE GALDEANO C.S., CASADO C.L., 2003, Use of active fault data versus seismicity data in the evaluation of seismic hazard in the Granada Basin (Southern Spain), Bulletin of the Seismological Society of America, 93 (4), 1670–1678.
MOUSSA K., 1996, Le Miocene de la bordure Nord des monts de Béni-Chougrane: Etude Stratigraphique et Sedimentologique du secteur: Bou Ziri-Oued El Hammam, These de Magister, université d’Es-Senia Oran, 206 p.
NEURDIN-TRESCARTES J., 1992, Le remplissage sédimentaire du bassin Néogène du Chélif, modele de référence de bassins intramontagneux (Doctoral dissertation, Pau).
NEURDIN-TRESCARTES J., 1993, Evolution du bassin néogène du Chélif (Algérie nord-occidentale). Un exemple d’interaction sédimentation-tectonique, [in:] Bassins sédimentaires africains, Géodynamique et géologie séquentielle, biominéralisation, sédimentation et organismes, 4◦ Colloque de géologie africaine, Pau, pp. 25–29.
NUTTLI O.W., 1983, Average seismic source-parameter relations for mid-plate earthquakes, Bulletin of the Seismological Society of America, 73 (2), 519–535.
PELAEZ J.A., LÓPEZ C., HENARES J., 2002, Deaggregation in magnitude, distance, and azimuth in the south and west of the Iberian Peninsula, Bull. Seism. Soc. Am., 92, 2177–2185.
PERRODON A., 1957, Etude géologique des bassins néogènes sublittoraux de l’Algérie occidentale (Doctoral dissertation).
ROTHÉ J.P., DECHEVOY N., SELTZER P., 1950, Les séismes de Kerrata et la séismicité de l’Algérie, Pauc.
SLEMMONS D.B., 1977, State-of-the-Art for Assessing Earthquake Hazards in the United States, Report 6, Faults and Earthquake Magnitude (No. WES-MP-S-73-1-6), Mackay school of mines renonv.
SLEMMONS D.B., 1982, Determination of design earthquake magnitude for micronation, p. 119–130, [in:] University of Washington (réd.), Proceedings of the 3rd International Earthquake Microzonation Conference, Seattle, 28 juin–1er juillet 1982, Earthquake Society, Vol. 1, 805 p.
STIRLING M.W., WESNOUSKY S.G., SHIMAZAKI K., 1996, Fault trace complexity, cumulative slip, and the shape of the magnitude frequency distribution for strike slip faults: A global survey, Geophysical Journal International, 124 (3), 833–868.
STRASSER F.O., ARANGO M.C., BOMMER J.J., 2010, Scaling of the Source Dimensions of Interface and Intraslab Subduction-zone Earthquakes with Moment Magnitude, Seism. Res. Lett., 81 (6), 941–950.
THOMAS G., 1979, Sur l’existence d’une compression intra-miocène post-nappe dans le Tell méridional oranais (Algérie), CR Somm. Soc. Géol. France, 2, 56–59.
THOMAS G., 1985, Géodynamique d’un bassin intramontagneux. Le Bassin du Bas Chélif occidental (Algérie) durant le Mio-Plio-Quaternaire, Thèse Es-Sciences, Pau, 594 p., 162 figs., 32 tabl., 3 pl. h.t.
TRAVELLETTI J., DELACOURT C., ALLEMAND P., MALET J.P., SCHMITTBUHL J., TOUSSAINT R., BASTARD M., 2012, Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations, ISPRS Journal of Photogrammetry and Remote Sensing, 70, 39–55.
USGS 1994, US Geological Survey, the 18th 1994 Mascara earthquake data.
VAKOV A.V., 1996, Relationships between earthquake magnitude, source geometry and slip mechanism, Tectonophysics, 261 (1), 97–113.
WELLS D.L., COPPERSMITH K.J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the seismological Society of America, 84 (4), 974–1002.
WESNOUSKY S.G., SCHOLZ C.H., SHIMAZAKI K., MATSUDA T., 1983, Earthquake frequency distribution and the mechanics of faulting, J. Geophys. Res., 88 (B11), 9331–9340.
WOODWARD-CLYDE C., 1983, Seismic exposure study, offshore, southern California, Report to Texaco USA, New Orleans, 178 p.
WYSS M., 1979, Estimating maximum expectable magnitude of earthquake from fault dimension, Geology, Vol. 7, No. 7, 336–340.
XIANG J., GAO D., 1994, The strong ground motion records obtained in Lancang-Gengma earthquake in 1988, China, and their application, Rept. at International Workshop on Seismotectonics and Seismic Hazard in Southeast Asia, Hanoi.
YELLES-CHAOUCHE A., BOUDIAF A., DJELLIT H., BRACENE R., 2006, La tectonique active de la région nord-algérienne, Comptes Rendus Geoscience, 338 (1), 126–139.
ZŮVALA R., FIŠEROVÁ E., MAREK L., 2016, Mathematical aspects of the kriging applied on landslide in Halenkovice (Czech Republic), Open Geosciences, 8 (1), 275–288.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-8e54a5bf-96dc-4a7a-b905-6dd2dc1d034e
Identyfikatory
DOI 10.5277/Msc192609