Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Polish Journal of Chemical Technology

Tytuł artykułu

Technological parameters of epoxidation of sesame oil with performic acid

Autorzy Musik, M.  Milchert, E.  Malarczyk-Matusiak, K. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The course of epoxidation of sesame oil (SO) with performic acid formed „in situ” by the reaction of 30 wt% hydrogen peroxide and formic acid in the presence of sulfuric acid(VI) as a catalyst was studied. The most advantageous of the technological independent parameters of epoxidation are as follows: temperature 80°C, H2O2  C=C 3.5:1, HCOOH/C=C 0.8:1, amount of catalyst as H2SO4 /(H2O2 +HCOOH) 1 wt%, stirring speed at least 700 rpm, reaction time 6 h. The iodine number (IN), epoxy number (EN), a relative conversion to oxirane (RCO) and oxirane oxygen content (EOe) were determined every hour during the reaction. Under optimal conditions the sesame oil conversion amounted to 90.7%, the selectivity of transformation to epoxidized sesame oil was equal to 93.2%, EN = 0.34 mol/100 g, IN = 0.04 mol/100 g oil (10.2 g/100 g oil), a relative conversion to oxirane RCO = 84.6%, and oxirane oxygen content of EOe = 5.5%.
Słowa kluczowe
EN sesame oil   epoxidation   performic acid   hydrogen peroxide  
Wydawca West Pomeranian University of Technology. Publishing House
Czasopismo Polish Journal of Chemical Technology
Rocznik 2018
Tom Vol. 20, nr 3
Strony 53--59
Opis fizyczny Bibliogr. 32 poz., rys., tab.
autor Musik, M.
  • West Pomeranian University of Technology Szczecin, Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
autor Milchert, E.
  • West Pomeranian University of Technology Szczecin, Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
autor Malarczyk-Matusiak, K.
  • West Pomeranian University of Technology Szczecin, Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, Pułaskiego 10, 70-322 Szczecin, Poland,
1. Gan, L.H., Ooi, K.S., Goh, S.H., Gan, L.M. & Leong, Y.C. (1995). Epoxidized esters of palm olein as plasticizers for poly(vinyl chloride). Europ. Polym. J. 31, 719–724. DOI: 10.1016/0014-3057(95)00031-3.
2. Bunker, S.P. & Wool, R.P. (2002). Synthesis and characterization of monomers and polymers for adhesives from methyl oleate. J. Polym. Sci. Part A: Polym. Chem. 40, 451–458. DOI: 10.1002/pola.10130.
3. Petrović, Z.S., Zlatanić, A., Lava, C.C. & Sinadović-Fišer, S. (2002). Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids — kinetics and side reactions. Eur. J. Lipid Sci. Technol. 104, 293–299. DOI: 10.1002/1438-9312(200205)104:5<293::AIDEJLT293>3.0.CO;2-W.
4. Meshram, P.D., Puri, R.G. & Patil, H.V. (2011). Epoxidation of wild safflower (carthamus oxyacantha) oil with peroxy acid in presence of strongly acidic cation exchange resin IR-122 as catalyst. Int. J. Chem. Tech. Res. 3(3), 1152–1163.
5. Goud, V.V., Patwardhan, A.V., Dinda, S. & Pradhan, N.C. (2007). Epoxidation of karanja (Pongamia glabra) oil catalyzed by acidic ion exchange resin. Eur. J. Lipid. Sci. Technol. 109, 575–584. DOI: 10.1002/ejlt.200600298.
6. Gurbanov, M.Sh., Mamedov, B.A. (2009). Epoxidation of flax oil with hydrogen peroxide in a conjugate system in the presence of acetic acid and chlorinated cation exchanger KU-2x8 as catalyst. Russ. J. Appl. Chem. 82(8), 1483–1487. DOI: 10.1134/S1070427209080308.
7. Poli, E., Clacens, J.M., Barrault, J., Pouilloux, Y. (2009). Solvent-free selective epoxidation of fatty esters over a tungstenbased catalyst. Catal. Today. 140(1–2), 19–22. DOI: 10.1016/j.cattod.2008.07.004.
8. Benaniba, M.T., Belhaneche-Bensemra, N. & Gelbard, G. (2007). Kinetics of tungsten-catalyzed sunflower oil epoxidation studied by 1H NMR. Eur. J. Lipid Sci. Technol. 109(12), 1186–1193. DOI: 10.1002/ejlt.200700114.
9. Rios, L.A., Weckes, P., Schuster, H. & Hoelderich, W.F. (2005). Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils. J. Catal. 232(1), 19–26. DOI: 10.1016/j.jcat.2005.02.011.
10. Ye, X., Jiang, P., Zhang, P., Dong, Y., Jia, Ch., Zhang, X. & Xu, H. (2010). Novel Ti and mesoporous molecular sieves: synthesis, characterization and catalytic activity in the epoxidation of vegetable oil. Catal. Lett. 137(1–2), 88–93. DOI: 10.1007/s10562-010-0334-z.
11. Gerbase, E., Gregório, J.R., Martinelli, M., Brasil, M.C. & Mendes, A.N.F. (2002). Epoxidation of soybean oil by the methyltrioxorenium CH2Cl2/H2O2 catalytic biphasic system. J. Am. Oil Chem. Soc. 79(2), 179–181. DOI: 10.1007/s11746-002-0455-0.
12. Rüsch gen. Klaas, M. & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Ind. Crop. Prod. 9(2), 125–132. DOI: 10.1016/S0926-6690(98)00023-5.
13. Milchert, E., Malarczyk, K. & Kłos, M. (2015). Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review. Molecules 20(12), 21481–21493. DOI: 10.3390/molecules201219778.
14. Metzger, J.O. & Bornscheuer, U.T. (2006). Lipids as renewable resources: Current state of chemical and biotechnological conversion and divesification. Appl. Microbiol. Biotechnol. 71(1), 13–22. DOI: 10.1007/s00253-006-0335-4.
15. Tan, S.G. & Chow, W.S. (2010). Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polym. Plast. Technol. Eng. 49(15), 1581–1590. DOI: 10.1080/03602559.2010.512338.
16. Patil, H., Waghmare, J. (2013). Catalyst for epoxidation of oils: a review. Discovery 3(7), 10–14.
17. Bang Hyo-Jeong, Kim Cheong-Tae, Byung Hee Kim (2014). Liquid and gas chromatographic analyses of triacylglycerols for Asian sesame oil traceability. Eur. J. Lipid Sci. Technol. 116(10), 1354–1362. DOI: 10.1002/ejlt.201400089.
18. Saydut, A., Duz, M.Z., Kaya, C., Kafadar, C. & Hamamci, A.B. (2008). Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresource Technol. 99(14), 6656–6660. DOI: 10.1016/j.biortech.2007.11.063.
19. Mohamed, H.M.A. & Awatif, I.I. (1998). The use of sesame oil unsaponiftable matter as a natural antioxidant. Food Chem. 62 (3), 269–276. DOI: 10.1016/S0308-8146(97)00193-3.
20. Mordret, F. (1968). Detection of sesame oil. J. Crops Grass 6, 389–397.
21. Filippis, P.D., Scarsella, M. & Verdone, N. (2009). Peroxyformic acid formation: a kinetic study. Ind. Eng. Chem. Res. 48(3), 1372–1375. DOI: 10.1021/ie801163j.
22. Musik, M. & Michert, E. (2017). Selectice epoxidation of sesame oil with peracetic acid. Mol. Catalysis 433, 170–174. DOI: 10.1016/j.mcat.2017.02.012.
23. International standard EN ISO 5508, Analysis by gas chromatography of methyl esters of fatty acids.
24. International standard EN ISO 3961, Animal and vegetable fats and oils. Determination of iodine value.
25. International standard EN ISO 3001, Plastics, epoxy compounds. Determination of epoxy equivalent.
26. Gupta, S.S., Guchhait, A., Sarkar, S. & Ghosh, M. (2016). Comparative evaluation of the physico-chemical properties of chemically and enzymatically epoxidised soybean oil. Int. Res. J. Chem. 1(2), 17–24.
27. Mungroo, R., Pradhan, N.C., Goud, V.V. & Dalai, A.K. (2008). Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem. Soc. 85(9), 887–896. DOI: 10.1007/s11746-008-1277-z.
28. Goud, V.V., Dinda, S., Patwardhan, A.V. & Pradhan, N.C. (2010). Epoxidation of jatropha (Jatropha curcas) oil by peroxyacids. Asia-Pacyfi c J. Chem. Eng. 5(2), 346–354. DOI: 10.1002/apj.285.
29. Stenmark, G.A. (1958). Determination of alpha-glycol content of epoxy resins. Anal. Chem. 30(3), 381–383. DOI: 10.1021/ac60135a020.
30. Goud, V.V., Patwardhan, A.V. & Pradhan, N.C. (2006). Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresource Technol. 97(12), 1365–1371. DOI: 10.1016/j.biortech.2005.07.004.
31. Moreno, V.C., Russo, V., Tesser, R. & Serio, M.D., Salzano E. (2017). Thermal risk in semi-batch reactors: the epoxidation of soybean oil. Process Saf. Environ. Prot.109, 529–537. DOI: 10.1016/j.psep.2017.05.001.
32. Leveneur, S. (2017). Thermal safety assessment through the concept of structure-reactivity: application to vegetable oil valorization. Org. Process Res. Dev. 21(4), 543–550. DOI: 10.1021/acs.oprd.6b00405.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-8d960bf2-12f9-4dab-9dc0-0a8f3f64208d
DOI 10.2478/pjct-2018-0038