Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-8d17cfda-a9f3-47f7-9d81-3b5dcba6764c

Czasopismo

Acta Geophysica

Tytuł artykułu

Subdiffusion of volcanic earthquakes

Autorzy Abe, S.  Suzuki, N. 
Treść / Zawartość http://agp.igf.edu.pl/ http://link.springer.com/journal/volumesAndIssues/11600
Warianty tytułu
Języki publikacji EN
Abstrakty
EN A comparative study is performed on volcanic seismicities at Icelandic volcano, Eyjafjallajökull, and Mt. Etna in Sicily from the viewpoint of complex systems science, and the discovery of remarkable similarities between them is reported. In these seismicities as point processes, the jump probability distributions of earthquakes (i.e., distributions of the distance between the hypocenters of two successive events) are found to obey the exponential law, whereas the waiting-time distributions (i.e., distributions of inter-occurrence time of two successive events) follow the power law. A careful analysis is made about the finite size effects on the waiting-time distributions, and the previously reported results for Mt. Etna (Abe and Suzuki 2015) are reinterpreted accordingly. It is shown that the growth of the seismic region in time is subdiffusive at both volcanoes. The aging phenomenon is commonly observed in the “event-time-averaged” mean-squared displacements of the hypocenters. A comment is also made on (non-)Markovianity of the processes.
Słowa kluczowe
PL subdyfuzja   sejsmiczność wulkaniczna   rozkład czasu   prawo energetyczne  
EN subdiffusion   volcanic seismicity   waiting time   power law   (non-)Markovianity   finite-dada-size effects   exponential jump probability distributions  
Wydawca Instytut Geofizyki PAN
Springer
Czasopismo Acta Geophysica
Rocznik 2017
Tom Vol. 65, no. 3
Strony 481--489
Opis fizyczny Bibliogr. 20 poz.
Twórcy
autor Abe, S.
  • Physics Division, Faculty of Information Science and Engineering, Huaqiao University, Xiamen, China; Department of Physical Engineering, Mie University, Mie, Japan; Institute of Physics, Kazan Federal University, Kazan, Russia, suabe@sf6.so-net.ne.jp
autor Suzuki, N.
  • College of Science and Technology, Nihon University, Funabashi, Chiba, Japan
Bibliografia
1. Abe S, Suzuki N (2003) Law for the distance between successive earthquakes. J Geophys Res 108(B2):2113. doi:10.1029/2002JB002220
2. Abe S, Suzuki N (2005) Scale-free statistics of time interval between successive earthquakes. Physica A 350(2–4):588–596. doi:10.1016/j.physa.2004.10.040
3. Abe S, Suzuki N (2009) Violation of the scaling relation and non-Markovian nature of earthquake aftershocks. Physica A 388(9):1917–1920. doi:10.1016/j.physa.2009.01.031
4. Abe S, Suzuki N (2012) Aftershocks in modern perspectives: complex earthquake network, aging, and non-Markovianity. Acta Geophys 60(3):547–561. doi:10.2478/s11600-012-0026-8
5. Abe S, Suzuki N (2015) Anomalous diffusion of volcanic earthquakes. EPL 110(5):59001. doi:10.1209/0295-5075/110/59001
6. Bardou F, Bouchaud JP, Aspect A, Cohen-Tannoudji C (2002) Lévy statistics and laser cooling: how rare events bring atoms to rest. Cambridge University Press, Cambridge
7. Barndorff-Nielsen OE, Benth FE, Jensen JL (2000) Markov jump processes with a singularity. Adv Appl Probab 32(3):779–799. doi:10.1017/S0001867800010259
8. Boon JP, Lutsko JF (2017) Temporal diffusion: from microscopic dynamics to generalised Fokker–Planck and fractional equations. J Stat Phys 166(6):1441–1454. doi:10.1007/s10955-017-1716-z
9. Bouchaud JP, Georges A (1990) Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys Rep 195(4–5):127–293. doi:10.1016/0370-1573(90)90099-N
10. Hill DP, Pollitz F, Newhall C (2002) Earthquake–volcano interactions. Phys Today 55(11):41–47. doi:10.1063/1.1535006
11. Metzler R, Jeon JH, Cherstvy AG, Barkai E (2014) Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 16(44):24128–24164. doi:10.1039/c4cp03465a
12. Omori F (1894) On the after-shocks of earthquakes. J Coll Sci Imp Univ Tokyo 7(2):111–200
13. Roman DC, Cashman KV (2006) The origin of volcano-tectonic earthquake swarms. Geology 34(6):457–460. doi:10.1130/G22269.1
14. Schulz JHP, Barkai E, Metzler R (2014) Aging renewal theory and application to random walks. Phys Rev X 4(1):011028. doi:10.1103/PhysRevX.4.011028
15. Shlesinger MF, Zaslavsky GM, Frisch U (eds) (1995) Lévy flights and related topics in physics. Springer, Heidelberg
16. Tejedor V, Bénichou O, Voituriez R, Jungmann R, Simmel F, Selhuber-Unkel C, Oddershede LB, Metzler R (2010) Quantitative analysis of single particle trajectories: mean maximal excursion method. Biophys J 98(7):1364–1372. doi:10.1016/j.bpj.2009.12.4282
17. Tsuji D, Katsuragi H (2015) Temporal analysis of acoustic emission from a plunged granular bed. Phys Rev E 92(4):042201. doi:10.1103/PhysRevE.92.042201
18. Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University, Cambridge
19. Utsu T (1961) A statistical study on the occurrence of aftershocks. Geophys Mag 30(4):521–605
20. Zobin VM (2012) Introduction to volcanic seismology, 2nd edn. Elsevier, London
Uwagi
Errata do artykułu s. 481–489
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-8d17cfda-a9f3-47f7-9d81-3b5dcba6764c
Identyfikatory
DOI 10.1007/s11600-017-0029-6