PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of potential elastic energy during the countermovement phase of a vertical jump based on the force-displacement curve

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: One inconvenience in finding experimental evidence for the relationship between potential elastic energy and vertical jump height is the difficulty of estimating the value of the stored potential elastic energy. Therefore, the aim of this study is to present a simple method of estimating the potential elastic energy stored by lowering the center of mass during the countermovement phase of a vertical jump. Methods: The research was conducted on 30 able-bodied male university students (age: 20 years, body height: 183.1 ± 7.9 cm, body mass: 80.3 ± 10.4 kg). Each participant performed 10 single countermovement jumps with arms akimbo to maximal height. Measurements employed a Kistler force plate. The value of potential elastic energy was estimated based on the curve of dependence of the ground reaction force on the vertical displacement of the jumper’s center of mass. Results: The mean value (±SD) of potential elastic energy collected due to lowering of the center of mass during the countermovement phase of a vertical jump was 183 ± 69 J. 24.3% of this value can be considered the part of the potential elastic energy (44 ± 21 J) that comes from the transformation of kinetic energy. The total change in gravitational potential energy due to lowering the center of mass was 240 ± 58 J. Conclusions: This estimation of potential elastic energy is only general and rough. However, certain estimations of potential elastic energy may offer some insight into the phenomenon relating vertical quasi-stiffness and the ability to store potential elastic energy with vertical jump height.
Rocznik
Strony
153--160
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
  • Department of Biomechanics, University School of Physical Education, Wrocław, Poland
Bibliografia
  • [1] ABOODARDA S.J., YUSOF A., ABU OSMAN N.A., THOMPSON M.W., MOKHTAR A.H., Enhanced performance with elastic resistance during the eccentric phase of a countermovement jump, Int. J. Sport. Physiol., 2013, 8(2), 181–187.
  • [2] ANDERSON F.C., PANDY M.G., Storage and utilization of elastic strain energy during jumping, J. Biomech., 1993, 26(12), 1413–1427.
  • [3] BLICKHAN R., The spring-mass model for running and hopping, J. Biomech., 1989, 22(11), 1217–1227.
  • [4] BOBER T., The problem of jumping ability in the light of biomechanical analysis, Rozprawy Naukowe Wyższej Szkoły Wychowania Fizycznego we Wrocławiu, 1964, 3, 61–112.
  • [5] BOBBERT M.F., GERRITSEN K.G.M., LITJENS M.C.A., VAN SOEST A.J., Why is countermovement jump height greater than squat jump height? Med. Sci. Sport. Exer., 1996, 28(11), 1402–1412.
  • [6] FARLEY C.T., BLICKHAN R., SAITO J., TAYLOR C.R., Hopping frequency in humans: a test of how springs set frequency in bouncing gaits, J. Appl. Physiol., 1991, 71(6), 2127–2132.
  • [7] FARLEY C.T., HOUDIJK H.H.P., VAN STRIEN C., LOUIE M., Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses, J. Appl. Physiol., 1998, 85(3), 1044–1055.
  • [8] FERRIS D.P., FARLEY C.T., Interaction of leg stiffness and surface stiffness during human hopping, J. Appl. Physiol., 1997, 82(1), 15–22.
  • [9] GAJEWSKI J., MICHALSKI R., BUŚKO K., MAZUR-RÓŻYCKA J., STANIAK Z., Countermovement depth – a variable which clarifies the relationship between the maximum power output and height of a vertical jump, Acta Bioeng. Biomech., 2018, 20(1), 127–134.
  • [10] GRABSKI J.K., WALCZAK T., MICHAŁOWSKA M., PASTUSIAK P., SZCZETYŃSKA M., On different methods for calculating the flight height in the vertical countermovement jump analysis, [in:] K. Arkusz, R. Będziński, T. Klekiel, S. Piszczatowski (Eds.), Biomechanics in Medicine and Biology, Proceedings of the International Conference of the Polish Society ofBiomechanics, Zielona Góra, Poland, September 5–7, 2018, Advances in Intelligent Systems and Computing, Vol. 831, Springer Nature Switzerland AG, 2019.
  • [11] GRANATA K.P., PADUA D.A., WILSON S.E., Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks, J. Electromyogr. Kines., 2002, 12(1), 127–135.
  • [12] KIM S., SON Y., Mechanical work-canceling strategy modulates initial push-off force depending on vertical height, J. Mech. Sci. Technol., 2018, 32(11), 5345–5350.
  • [13] KOMI P.V., Stretch-shortening cycle: a powerful model to study normal and fatigued muscle, J. Biomech., 2000, 33(10), 1197–1206.
  • [14] KUITUNEN S., KYRÖLÄINEN H., AVELA J., KOMI P.V., Leg stiffness modulation during exhaustive stretch-shortening cycle exercise, Scand. J. Med. Sci. Spor., 2007, 17(1), 67–75.
  • [15] LIU Y., PENG C.-H., WEI S.-H., CHI J.-C., TSAI F.-R., CHEN J.-Y., Active leg stiffness and energy stored in the muscles during maximal counter movement jump in the aged, J. Electromyogr. Kines., 2006, 16(4), 342–351.
  • [16] MORAN K.A., WALLACE E.S., Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping, Hum. Movement Sci., 2007, 26(6), 824–840.
  • [17] ROBERTS T.J., Contribution of elastic tissues to the mechanics and energetics of muscle function during movement, J. Exp. Biol., 2016, 219(2), 266–275.
  • [18] STRUZIK A., Leg stiffness during vertical jumps to maximal and specific heights, Studia i Monografie Akademii Wychowania Fizycznego we Wrocławiu, nr 128. Wydawnictwo Akademii Wychowania Fizycznego we Wrocławiu, 2018.
  • [19] STRUZIK A., ZAWADZKI J., Application of force-length curve for determination of leg stiffness during a vertical jump, Acta Bioeng. Biomech., 2016, 18(2), 163–171.
  • [20] STRUZIK A., ZAWADZKI J., ROKITA A., Leg stiffness and potential energy in the countermovement phase and CMJ jump height, Biomed. Hum. Kinet., 2016, 8, 39–44.
  • [21] TAUBE W., LEUKEL C., GOLLHOFER A., How neurons make us jump: the neural control of stretch-shortening cycle movements, Exerc. Sport Sci. Rev., 2012, 40(2), 106–115.
  • [22] WADE L., LICHTWARK G., FARRIS D.J., Movement strategies for countermovement jumping are potentially influenced by elastic energy stored and released from tendons, Sci. Rep., UK, 2018, 8(1), 2300.
  • [23] WILSON G.J., ELLIOTT B.C., WOOD G.A., The effect on performance of imposing a delay during a stretch-shorten cycle movement, Med. Sci. Sport. Exer., 1991, 23(3), 364–370.
  • [24] WILSON J.M., FLANAGAN E.P., The role of elastic energy in activities with high force and power requirements: a brief review, J. Strength Cond. Res., 2008. 22(5), 1705–1715.
  • [25] ZAWADZKI J., Muscle drive strategy in intense cyclic movements of the forearm, Studia i Monografie Akademii Wychowania Fizycznego we Wrocławiu, nr 78. Wydawnictwo Akademii Wychowania Fizycznego we Wrocławiu, 2005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c8422cf-a39f-4cdf-9fd1-084ea955b4f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.