Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-8c1219f7-e49c-4556-b138-9dd1a9bde391

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Analysis of the influence of the transducer and its coupling layer on round window stimulation

Autorzy Liu, H.  Xu, D.  Yang, J.  Yang, S.  Cheng, G.  Huang, X. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: In this work, a finite element study is proposed to evaluate the effects of the transducer and its coupling layer on the performance of round window (RW) stimulation. Methods: Based on a set of micro-computer tomography images of a healthy adult’s right ear and reverse engineering technique, a coupled finite-element model of the human ear and the transducer was constructed and verified. Then, the effect of the cross-section of the transducer, the elastic modulus of the coupling layer, the mass of the transducer, and the preload of the transducer were studied. Results: The increase of the transducer’s cross-section area deteriorates the RW stimulation, especially at the lower frequencies. This adverse effect of the cross-section area’s increase of the transducer can be reduced by adding a coupling layer between the transducer and the RW. However, the coupling layer’s improvement on the RW stimulation is reduced with the increase of its elastic modulus. Moreover, the mass loading of the transducer decreases the RW stimulation’s performance mainly at higher frequencies and applying a static preload on the transducer enhances its hearing compensating performance at higher frequencies. Conclusions: The influence of the transducer’s mass, the mass of the transducer, the applied static preload and the properties of the coupling layer must be taken into account in the design of the RW stimulation type implantable middle ear hearing device.
Słowa kluczowe
PL słuch   stymulacja   przetwornik   RW   FEM  
EN implantable middle ear hearing device   round window stimulation   transducer   coupling layer   finite element analysis  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 2
Strony 103--111
Opis fizyczny Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor Liu, H.
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China, liuhg@cumt.edu.cn
autor Xu, D.
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
autor Yang, J.
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
autor Yang, S.
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
autor Cheng, G.
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
autor Huang, X.
  • Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Zhongshan Hospital affiliated to Fudan University, Shanghai, China
Bibliografia
[1] Aibara R., Welsh J.T., Puria S., Goode R.L., Human middle-ear sound transfer function and cochlear input impedance, Hearing. Res., 2001, 152(1-2):100-109.
[2] Arnold A., Stieger C., Candreia C., Pfiffner F., Kompis M., Factors improving the vibration transfer of the floating mass transducer at the round window, Otol. Neurotol., 2010, 31(1): 122-128.
[3] Atturo F., Barbara M., Rask-Andersen H., Is the human round window really round? An anatomic study with surgical implications, Otol. Neurotol., 2014, 35(8): 1354-1360.
[4] Ball G.R., The vibrant soundbridge: Design and development, Adv. Oto-rhino-laryng., 2010, 69:1-13.
[5] Békésy G.V., Experiments in hearing, McGraw-Hill, 1960.
[6] Beltrame A.M., Martini A.S., Giarbini N., Streitberger C., Coupling the Vibrant Soundbridge to cochlea round window: auditory results in patients with mixed hearing loss, Otol. Neurotol., 2009, 30(2):194-201.
[7] Colletti V., Soli S.D., Carner M., Colletti L., Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window, Int. J. Audiol., 2006, 45(10): 600-608.
[8] Gan R.Z., Reeves B.P., Wang X., Modeling of sound transmission from ear canal to cochlea, Ann. Biomed. Eng., 2007, 35(12): 2180-2195.
[9] Gentil F., Parente M., Martins P., Garbe C., Jorge R.N., Ferreira A., Tavares J. M. R. S., The influence of the mechanical behaviour of the middle ear ligaments: A finite element analysis, P. I. Mech. Eng. H., 2011, 225(1): 68-76.
[10]Gentil F., Parente M., Martins P., Santos C., Almeida E., Ferreira A., Natal R., Numerical study of Hough technique in surgery of otosclerosis, using the finite element method. Acta. Bioeng. Biomech., 2015, 17(4):149-153.
[11]Ghadarghadar N., Agrawal S.K., Samani A., Ladak H.M., Estimation of the quasi-static Young's modulus of the eardrum using a pressurization technique, Comput. Meth. Prog. Bio., 2013, 110(3): 231-239.
[12]Gundersen T., Skarstein O., Sikkeland T., A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the Mossbauer effect, Acta. Oto-laryngol., 1978, 86(3-4): 225-232.
[13] Hong E.P., Kim M.K., Park I.Y., Lee S.H., Row Y., Cho J.H., Vibration Modeling and design of piezoelectric floating mass transducer for Implantable middle ear hearing devices, Ieice. T. Fund. Electr., 2007, E90a(8):1620-1627.
[14]Kringlebotn M., Gundersen T., Krokstad A., Skarstein O., Noise-induced hearing losses. Can they be explained by basilar membrane movement?, Acta. Oto-laryngologica., 1979, 360: 98-101.
[15]Li P.M., Wang H., Northrop C., Merchant S.N., Nadol J.B., Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures, Otol. Neurotol., 2007, 28(5): 641-648.
[16] Liu H.G., Ta N., Ming X.F., Rao Z.S., Design of floating mass type piezoelectric actuator for implantable middle ear hearing devices, Chin. J. Mech. Eng., 2009, 22(2):221-226.
[17]Liu H., Ge S., Cheng G., Yang J., Rao Z., Huang X., The effect of implantable transducers on middle ear transfer function -a comparative numerical analysis, J. Mech. Med. Biol., 2016, 16(04): 1650040.
[18]Lupo J.E., Koka K., Hyde B.J., Jenkins H.A., Tollin D.J., Physiological assessment of active middle ear implant coupling to the round window in Chinchilla lanigera, Otolaryng. Head. Neck., 2011, 145(4): 641-647.
[19]Maier H., Salcher R., Schwab B., Lenarz T., The effect of static force on round window stimulation with the direct acoustic cochlea stimulator, Hearing. Res., 2013, 301(7): 115-124.
[20] Nakajima H.H., Dong W., Olson E.S., Rosowski J.J., Ravicz M.E., Merchant S.N., Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones, Otol. Neurotol., 2010, 31(3): 506-511.
[21]Puria S., Peake W.T., Rosowski J.J., Sound-pressure measurements in the cochlear vestibule of human-cadaver ears, J. Acoust. Soc. Am., 1997, 101(1):2754-2770.
[22]Tian J.B., Huang X.S., Rao Z.S., Ta N., Xu L.F., Finite element analysis of the effect of actuator coupling conditions on round window stimulation, J. Mech. Med. Biol., 2015, 15(4):1550048.
[23] Volandri G., Puccio P.D., Forte P.,Carmignani C., Biomechanics of the tympanic membrane, J. Biomech., 2011, 44(7):1219-1236.
[24] Zernotti M.E., Arauz S.L., Di Gregorio M.F., Arauz S.A., Tabernero P., Romero M.C., Vibrant Soundbridge in congenital osseous atresia: multicenter study of 12 patients with osseous atresia, Acta. Oto-laryngol., 2013, 133(6):569-573.
[25]Zhang J., Tian J., Ta N., Huang X., Rao Z., Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties, P. I. Mech. Eng. H., 2016, 230(8): 784-794.
[26] Zhang X., Gan R.Z., A comprehensive model of human ear for analysis of implantable hearing devices, Ieee. T. Bio-med. Eng., 2011, 58(10): 3024-3027.
[27] Zhang X.M., Guan X.Y., Nakmali D., Palan V., Pineda M., Gan R.Z., Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid. J. Assoc. Res. Oto., 2014, 15(6):867-881.
[28]Zwislocki J., Analysis of the middle‐ war function. Part I: Input impedance, J. Acoust. Soc. Am., 1962, 34(9B):1514-1523.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
This work supported by National Natural Science Foundation of China (no. 51305442), the Jiangsu Provincial Natural Science Foundation (no. BK20130194), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-8c1219f7-e49c-4556-b138-9dd1a9bde391
Identyfikatory
DOI 10.5277/ABB-00783-2016-03