PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drought Risk Assessment in the Kopel River Basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of the study was to assess drought risk in the Kopel river basin on the basis of analysis of observations made in the period from 1972 to 2011. The Kopel river is a right tributary of the Warta river which it joins at 254+600 km. The drought risk was assessed on the basis of meteorological and hydrological diurnal data. The trend analysis revealed that temperature has a significant increasing tendency. On the basis of SNQ and Q70% flows the indices such as drought duration and drought volume were computed. Statistical analysis showed negative correlations between drought indices and precipitation. The results presented in this study indicated that drought risk in the Kopel river basin is high.
Słowa kluczowe
Rocznik
Strony
134--141
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Institute of Land Improvement, Environmental Development and Geodesy, Faculty of Environmental Engineering and Spatial Management, Poznan University of Life Sciences, Piątkowska 94 Str., 60-649 Poznań, Poland, masojka@up.poznan.pl
autor
  • Institute of Land Improvement, Environmental Development and Geodesy, Faculty of Environmental Engineering and Spatial Management, Poznan University of Life Sciences, Piątkowska 94 Str., 60-649 Poznań, Poland, jaskula@up.poznan.pl
autor
  • Institute of Land Improvement, Environmental Development and Geodesy, Faculty of Environmental Engineering and Spatial Management, Poznan University of Life Sciences, Piątkowska 94 Str., 60-649 Poznań, Poland
Bibliografia
  • 1. Baryła A., Hewelke E., Stańczyk T. and Ptach W. 2016. Relative precipitation indexes in the Puczniew area. Scientific Review – Engineering and Environmental Sciences, 72, 156-166 [in Polish].
  • 2. Bąk B., Kejna M. and Uscka-Kowalkowska J. 2012. Meteorological droughts in the region of the station of integrated environmental monitoring in Koniczynka (Chełmno Lakeland) in the years 1951-2010. Water-Environment-Rural Areas, 12, 19-28 [in Polish].
  • 3. David V. and Davidová T. 2016. Assessment of Summer Drought in 2015 Using Different Indices in the Catchment of Blanice River. Procedia Engineering, 162, 45-55.
  • 4. European Environmental Agency. 2008. Impacts of Europe’s changing climate – 2008 indicator – based assessment. EEA Report No. 4, JRC Reference Report No. JRC47756.
  • 5. Esfahanian E., Nejadhashemi A.P., Abouali M., Adhikari U., Zhang Z., Daneshvar F. and Herman, M. R. 2017. Development and evaluation of a comprehensive drought index. Journal of Environmental Management, 185, 31-43.
  • 6. Francés G.E., Quevauviller P., González E.S.M. and Amelin E.V. 2017. Climate change policy and water resources in the EU and Spain. A closer look into the Water Framework Directive. Environmental Science & Policy, 69, 1-12.
  • 7. Haro-Monteagudo D., Solera A. and Andreu J. 2017. Drought early warning based on optimal risk forecasts in regulated river systems: Application to the Jucar River Basin (Spain). Journal of Hydrology, 544, 36-45.
  • 8. Hatmoko W., Raharja B., Tollenaar D. and Vernimmen R. 2015. Monitoring and Prediction of Hydrological Drought Using a Drought Early Warning System in Pemali-Comal River Basin, Indonesia. Procedia Environmental Sciences, 24, 56-64.
  • 9. Huang S., Huang Q., Chang J., Leng G. and Xing L. 2015a. The response of agricultural drought to meteorological drought and the influencing factors: a case study in the Wei River Basin, China. Agricultural Water Management, 159, 45-54.
  • 10. Huang S., Huang Q., Chang J., Zhu Y., Leng G. and Xing L. 2015b. Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin, China. Journal of Hydrology, 530, 127-136.
  • 11. Huang S., Huang Q., Leng G. and Liu S. 2016. A nonparametric multivariate standardized drought index for characterizing socioeconomic drought: A case study in the Heihe River Basin. Journal of Hydrology, 542, 875-883.
  • 12. Huang S., Li P., Huang Q., Leng G., Hou B. and Ma L. 2017. The propagation from meteorological to hydrological drought and its potential influence factors. Journal of Hydrology, 547, 184-195.
  • 13. Huang W.C. and Chou C.C. 2008. Risk-based drought early warning system in reservoir operation. Advances in Water Resources, 31(4), 649-660.
  • 14. Kanecka-Geszke E. and Smarzyńska K. 2007. Assessing meteorological drought in some agro-climatic regions of Poland by using different indices. Acta Scientiarum Polonorum. Formatio Circumiectus, (6)2, 41-50 [in polish].
  • 15. Kędziora A., Kępińska-Kasprzak M., Kowalczak P., Kundzewicz Z.W., Miler A.T., Pierzgalski E. and Tokarczyk T. 2014. Risks resulting from water shortages. Nauka, 1, 149-172 [in polish].
  • 16. Kręgiel B. and Jarosińska E. 2009. Current condition of drought monitoring in Poland and all over the world . Technical Transactions – Environmental Engineering, 106, 87-99 [in Polish].
  • 17. Kondracki J. 2002. Polish Regional Geography. PWN, Warszawa [in Polish].
  • 18. Kowalczak P. 2001. Hierarchy of regional requirements of small-scale retention in the Warta catchment basin. Institute of Meteorology and Water Management – National Research Institute [in Polish].
  • 19. Li Z., Hao Z., Shi X., Déry S. J., Li J., Chen S. and Li Y. 2016. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin. Global and Planetary Change, 143, 10-20.
  • 20. Łabędzki L. 2004. Drought problems in Poland. Water – Environment – Rural Areas, 4, 47-66 [in polish].
  • 21. Łabędzki L. and Bąk B. 2004. Differentiation of the atmospheric drought index SPI in the vegetation period in Poland. Water – Environment – Rural Areas, 4, 111–122 [in Polish].
  • 22. Masud M.B., Khaliq M.N. and Wheater H.S. 2015. Analysis of meteorological droughts for the Saskatchewan River Basin using univariate and bivariate approaches. Journal of Hydrology, 522, 452-466.
  • 23. Ministry of the Environment and the Institute of Environmental Protection – National Research Institute. 2013. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation to 2020.
  • 24. Mishra A.K. and Singh V.P. 2010. A review of drought concepts. Journal of Hydrology, 391(1), 202-216.
  • 25. National Water Management Authority. 2010. Raster Hydrographical Map of Poland 1:50 000.
  • 26. Pathak A.A. and Dodamani B.M. 2016. Comparison of two hydrological drought indices. Perspectives in Science, 8, 626-628.
  • 27. Report of the Ministry of Environment for the river Odra basin area of the implementation art. 5 and 6, est. II , III , IV of Directive 2000 / 60 / EC. 2005. [in Polish].
  • 28. Tokarczyk T. 2008. Widly applied indices for drought assessment and Polish application. Infrastructure and Ecology of Rural Areas, 7, 167-182 [in Polish].
  • 29. Wang K.Y., Li Q.F., Yang Y., Zeng M., Li P.C. and Zhang J.X. 2015. Analysis of spatio-temporal evolution of droughts in Luanhe River Basin using different drought indices. Water Science and Engineering, 8(4), 282-290.
  • 30. Woś A. 1993. Climatic regions of Poland in the light of the frequency of various weather types. Polish Academy of Sciences, z. 20 [in polish].
  • 31. Zhang Q., Xiao M. and Singh V.P. 2015. Uncertainty evaluation of copula analysis of hydrological droughts in the East River basin, China. Global and Planetary Change, 129, 1-9.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a7b9385-ae04-4314-991f-1b38c7e3724d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.