PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modeling of substrate effect on determination of elastic and plastic properties of TiN nanocoating in nanoindentation test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wall of a ventricular assist device is composed of a titanium nitride (TiN) nanocoating deposited on a biopolymer. Because of difficulties of the precise measurement of the force–displacement data for the soft substrate of polymer and for the very thin hard nanocoating of TiN in the nanoindentation test, it is assumed that the correctness of the results measured for these coatings deposited on steel is better. The sensitivity of results of nanoindentation test reached for different substrates with respect to properties of TiN influences the accuracy of the determination of mechanical properties in inverse analysis. In this work it is proved that the use of the steel instead of the biopolymer as a substrate for the measurement of the properties of the TiN increases the accuracy of determination of the plastic properties of the coating TiN in the nanoindentation test without significant reduction the accuracy of the determination of the elastic properties.
Rocznik
Strony
269--277
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, kopernik@agh.edu.pl
autor
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, milenin@agh.edu.pl
Bibliografia
  • [1] V. Le Saux, Y. Marco, G. Bles, S. Calloch, S. Moyne, S. Plessis, P. Charrier, Identification of constitutive model for rubber elasticity from micro-indentation tests on natural rubber and validation by macroscopic tests, Mechanics of Materials 43 (2011) 775-786.
  • [2] G. Rauchs, J. Bardon, D. Georges, Identification of the material parameters of a viscous hyperelastic constitutive law from spherical indentation tests of rubber and validation by tensile tests, Mechanics of Materials 42 (2010) 961–973.
  • [3] M. Kopernik, M. Spychalski, K.J. Kurzydłowski, M. Pietrzyk, Numerical identification of material model for C–Mn steel using micro-indentation test, Materials Science and Technology 24 (2008) 369–375.
  • [4] W.G. Jiang, J.J. Su, X.-Q. Feng, Effect of surface roughness on nanoindentation test of thin films, Engineering Fracture Mechanics 75 (2008) 4965–4972.
  • [5] C.E.K. Mady, S.A. Rodriguez, A.G. Gómez, R.M. Souza, Effects of mechanical properties, residual stress and indenter tip geometry on instrumented indentation data in thin films, Surface and Coatings Technology 205 (2010) 1393–1397.
  • [6] M. Kopernik, A. Milenin, R. Major, J.M. Lackner, Identification of material model of TiN using numerical simulation of nanoindentation test, Materials Science and Technology 27 (2011) 604–616.
  • [7] T.H. Zhang, Y. Huan, Substrate effects on the micro/nanomechanical properties of TiN coatings, Tribology Letters 17/4 (2004) 911–916.
  • [8] J. Lian, J. Wang, Y.Y. Kim, J. Greer, Sample boundary effect in nanoindentation of nano and microscale surface structures, Journal of the Mechanics and Physics of Solids 57 (2009) 812–827.
  • [9] H. Lu, Y. Ni, Effect of surface step on nanoindentation of thin films by multiscale analysis, Thin Solid Films 520 (2012) 4934–4940.
  • [10] A. Milenin, M. Kopernik, Comparative analysis of ventricular assist devices POLVAD and POLVAD_EXT based on multiscale FEM model, Acta of Bioengineering and Biomechanics 13/2 (2011) 13–23.
  • [11] M. El Fray, Elastomerowe biomaterialy polimerowe o polepszonej odporności zmęczeniowej dla potrzeb protez serca, Biuletyn Programu Polskie Sztuczne Serce 5 (2011) 18–23 (in Polish).
  • [12] N.D. Kankanamge, M. Mahendran, Mechanical properties of cold-formed steels at elevated temperatures, Thin-Walled Structures 49 (2011) 26–44.
  • [13] A. Milenin, M. Kopernik, Microscale analysis of strain –stress state for TiN nanocoating of POLVAD and POLVAD_EXT, Acta of Bioengineering and Biomechanics 13/4 (2011) 11–19.
  • [14] C.J. DaSilva, J.P. Rino, Atomistic simulation of the deformation mechanism during nanoindentation of gamma titanium aluminide, Computational Materials Science 62 (2012) 1–5.
  • [15] Z. Wang, F. Liu, W. Liang, L. Zhou, Study on tensile properties of nanoreinforced epoxy polymer: macroscopic experiments and nanoscale FEM simulation prediction, Advances in Materials Science and Engineering (2013) 1–8.
  • [16] M. Kopernik, D. Szeliga, Modelling of nanomaterials –sensitivity analysis to determine the nanoindentation test parameters, Computer Methods in Materials Science 7/2 (2007) 255–261.
  • [17] M. Kopernik, D. Szeliga, M. Pietrzyk, Problems of material models for hard nanocoatings, in: Proceedings of COMPLAS IX, 2007.
  • [18] M. Kopernik, A. Milenin, FEM Two-scale, model of multilayer blood chamber of POLVAD_EXT, Archives of Civil and Mechanical Engineering 12/2 (2012) 178–185.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a322283-9f24-446a-9122-8fda8073ed65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.