Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-882038d9-17de-4f14-87e4-011f48e2d2e3

Czasopismo

Archives of Electrical Engineering

Tytuł artykułu

Modal-frequency spectrum of magnetic flux density in air gap of permanent magnet motor

Autorzy Witczak, P.  Kubiak, W.  Lefik, M.  Szulakowski, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The classic relationships concerning the harmonic content in the air gap field of three-phase machines are presented in form of series of rotating waves. The same approach is applied to modeling of permanent magnet motors with fractional phase windings. All main reasons of non-sinusoidal shape of flux density distribution, namely, magnets’ shape and their placement, slotting, magnetic saturation and eccentricity are also related to their counterparts in modal-frequency spectrum. The Fourier 2D spectrum of time-stepping finite element solution is confronted with results of measurements, with special attention paid to accuracy of both methods.
Słowa kluczowe
EN electromagnetic fields   waves permanent magnet machines   air gap magnetic flux   spectral analysis   finite element method  
Wydawca Polish Academy of Sciences, Electrical Engineering Committee
Czasopismo Archives of Electrical Engineering
Rocznik 2014
Tom Vol. 63, nr 1
Strony 29--46
Opis fizyczny Bibliogr. 22 poz., rys., wykr., wz.
Twórcy
autor Witczak, P.
  • Institute of Mechatronics and Information Systems, Lodz University of Technology ul. Stefanowskiego 18/22, 90-924 Łódź, Poland, pwitczak@p.lodz.pl
autor Kubiak, W.
  • Institute of Mechatronics and Information Systems, Lodz University of Technology ul. Stefanowskiego 18/22, 90-924 Łódź, Poland
autor Lefik, M.
  • Institute of Mechatronics and Information Systems, Lodz University of Technology ul. Stefanowskiego 18/22, 90-924 Łódź, Poland
autor Szulakowski, J.
  • Institute of Mechatronics and Information Systems, Lodz University of Technology ul. Stefanowskiego 18/22, 90-924 Łódź, Poland
Bibliografia
[1] Heller B., Hamata V., Harmonic Effects in Induction Machines. Elsevier (1997).
[2] Bialik J., Vibrations and electromagnetic forces in two-speed large power induction motors. Ph. D. dissertation, Tech. Univ. of Wroclaw (2007) (in Polish).
[3] Karkosinski D., Vibration and acoustic effects in induction cage motors. D. Sc. dissertation, Tech. Univ. of Gdansk (2006) (in Polish).
[4] Vandevelde L., Gyselinck J., Melkebeek J., Electromechanical analysis of vibrations and noise of squirrel cage induction motors. Proc. of Int. Conf. on Electric Machines, Istanbul 1: 496-551 (1998).
[5] Zhu Z.Q., Howe D., Bolte E., Ackerman B., Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Part I: open-circuit field. IEEE Trans. Magnetics 29(1): 124-135 (1993).
[6] Zhu Z.Q., Howe D., Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Part II: armature reaction field. IEEE Trans. on Magnetics 29(1): 136-142 (1993).
[7] Zhu Z.Q., Howe D., Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Part III: effect of stator slotting. IEEE Trans. on Magnetics 29(1): 143-151 (1993).
[8] Zhu Z.Q., Howe D., Bolte E., Ackerman B., Instantaneous magnetic field distribution in brushless permanent magnet DC motors, Part IV: magnetic field on load. IEEE Trans. on Magnetics 29(1): 152-159 (1993).
[9] Zhu Z.Q., Howe D., Influence of design parameters on cogging torque in permanent magnet machines. IEEE Trans. Energy Convers 15(4): 407-412 (2000).
[10] Zhu Z.Q., Xia Z.P., Comparison of Halbach magnetized brushless machines based on discrete magnet segments or a single ring magnet. IEEE Trans. on Magnetics 38(5) (2002).
[11] Hwang S.-M., Eom J.-B., Hwang G.-B. et al., Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing, IEEE Trans. on Magnetics 36(5): 3144-3146 (2000).
[12] Kim T.-K., Kim S.-K., Hwang S.-M. et al., Comparison of magnetic forces for IPM and SPM motor with rotor eccentricity. IEEE Trans. on Magnetics 37(5): 3448-3451 (2001).
[13] Mi-Jung Kim, Byong-Kuk Kim, Ji-Woo Moon et al., Analysis of Inverter-Fed Squirrel-Cage Induction Motor During Eccentric Rotor Motion Using FEM, IEEE Trans. on Magnetics. 44(6): 1538-1541 (2008).
[14] Ping Jin, Shuhua Fang, Heyun Lin et al., Analytical Magnetic Field Analysis and Prediction of Cogging Force and Torque of a Linear and Rotary Permanent Magnet Actuator. IEEE Trans. on Magnetics 47: 3004-3007 (2011).
[15] Kawase Y., Mimura N., Ida K., 3-D electromagnetic force analysis of effects of off-center of rotor in interior permanent magnet synchronous motor, IEEE Trans. on Magnetics 36(4): 1858-1862 (2000).
[16] Łukaniszyn M., Jagieła M., Wróbel R., Optimization of Permanent Magnet Shape for minimum cogging torque using genetic algorithm. IEEE Trans.on Magnetics 40(2): 1228-1231 (2004).
[17] Wach P., Fractional windings in AC electric machines (in Polish), PWN, Warszawa (1997).
[18] El-Refaie A.M., Jahns T.M., Novotny D.W., Analysis of Surface Permanent Magnet Machines with Fractional-Slot Concentrated Windings. IEEE Trans. on Energy Conversion 21(1): 34-43 (2006).
[19] Wenxiang Zhao, Ming Cheng, Wei Hua et al., Back-EMF Harmonic Analysis and Fault-Tolerant Control of Flux-Switching Permanent-Magnet Machine with Redundancy. IEEE Trans. on Industrial Electronics 58(5): 1926-1935 (2011).
[20] Witczak P., Wawrzyniak B., Spectral Analysis of permanent magnet electric machines. COMPEL 27(4): 919-928 (2008).
[21] Witczak P., Vibration and acoustics of electric machines with permanent magnets. Monografie Politechniki Łódzkiej, (in Polish) (2012).
[22] Gasparin L., Fiser R., Cogging Torque Sensitivity to Permanent Magnet Tolerance Combinations. Archives of Electrical Engineering 62(3): 449-469 (2013).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-882038d9-17de-4f14-87e4-011f48e2d2e3
Identyfikatory
DOI 10.2478/aee-2014-0003