PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic Reverse-time Migration using Optimal Staggered-grid Finite-difference Operator Based on Least Squares

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reverse-time migration (RTM) directly solves the two-way wave equation for wavefield propagation; therefore, how to solve the wave equation accurately and quickly is very important for RTM. The conventional staggered-grid finite-difference (SFD) operators are usually based on the Taylor-series expansion theory. If they are used to solve wave equation on a larger frequency content, a strong dispersion will occur, which directly affects the seismic image quality. In this paper, we propose an optimal SFD operator based on least squares to solve acoustic wave equation for prestack RTM, and obtain a new antidispersion RTM algorithm that can use short spatial difference operators. The synthetic and real data tests demonstrate that the least squares SFD (LSSFD) operator can mitigate the numerical dispersion, and the acoustic RTM using the LSSFD operator can effectively improve image quality comparing with that using the Taylor-series expansion SFD (TESFD) operator. Moreover, the LSSFD method can adopt a shorter spatial difference operator to reduce the computing cost.
Czasopismo
Rocznik
Strony
715--734
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China , yanhongyong@163.com
autor
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • University of Chinese Academy of Sciences, Beijing, China
Bibliografia
  • [1] Baysal, E., D.D. Kosloff, and J.W.C. Sherwood (1983), Reverse time migration, Geophysics 48, 11, 1514-1524, DOI: 10.1190/1.1441434.
  • [2] Chattopadhyay, S., and G.A. McMechan (2008), Imaging conditions for prestack reverse- time migration, Geophysics 73, 3, S81-S89, DOI: 10.1190/ 1.2903822.
  • [3] Chu, C., and P.L. Stoffa (2012), Determination of finite-difference weights using scaled binomial windows, Geophysics 77, 3, W17-W26, DOI: 10.1190/ geo2011-0336.1.
  • [4] Claerbout, J.F. (1985), Imaging the Earth’s Interior, Blackwell Scientific Publs., Oxford.
  • [5] Dong, L.G., Z.T. Ma, J.Z. Cao, H.Z. Wang, J.H. Gao, B. Lei, and S.Y. Xu (2000), A staggered-grid high-order difference method of one-order elastic wave equation, Chin. J. Geophys. 43, 3, 411-419 (in Chinese).
  • [6] Igel, H., B. Riollet, and P. Mora (1992), Accuracy of staggered 3-D finite-difference grids for anisotropic wave propagation. In: 62th SEG Ann. Meeting, 25-29 October 1992, New Orleans, USA, SEG-1992-1244, Society of Exploration Geophysicists, 1244-1246.
  • [7] Kindelan, M., A. Kamel, and P. Sguazzero (1990), On the construction and efficiency of staggered numerical differentiators for the wave equation, Geophysics 55, 1, 107-110, DOI: 10.1190/1.1442763.
  • [8] Kosloff, D., R.C. Pestana, and H. Tal-Ezer (2010), Acoustic and elastic numerical wave simulations by recursive spatial derivative operators, Geophysics 75, 6, T167-T174, DOI: 10.1190/1.3485217.
  • [9] Leveille, J.P., I.F. Jones, Z.-Z. Zhou, B. Wang, and F. Liu (2011), Subsalt imaging for exploration, production, and development: A review, Geophysics 76, 5, WB3-WB20, DOI: 10.1190/geo2011-0156.1.
  • [10] Li, J., D. Yang, and F. Liu (2013), An efficient reverse time migration method using local nearly analytic discrete operator, Geophysics 78, 1, S15-S23, DOI: 10.1190/geo2012-0247.1.
  • [11] Liu, F., S.A. Morton, J.P. Leveille, and G. Zhang (2008), An anti-dispersion wave equation for modeling and reverse-time migration. In: 78th SEG Ann. Meeting, 9-14 November 2008, Las Vegas, USA, SEG-2008-2277, Society of Exploration Geophysicists, 2277-2281.
  • [12] Liu, F., G. Zhang, S.A. Morton, and J.P. Leveille (2011), An effective imaging condition for reverse-time migration using wavefield decomposition, Geophysics 76, 1, S29-S39, DOI: 10.1190/1.3533914.
  • [13] Liu, Y. (2013), Globally optimal finite-difference schemes based on least squares, Geophysics 78, 4, T113-T132, DOI: 10.1190/geo2012-0480.1.
  • [14] Liu, Y., and M.K. Sen (2009), An implicit staggered-grid finite-difference method for seismic modelling, Geophys. J. Int. 179, 1, 459-474, DOI: 10.1111/ j.1365-246X.2009.04305.x.
  • [15] Liu, Y., and M.K. Sen (2011), Scalar wave equation modeling with time-space domain dispersion-relation-based staggered-grid finite-difference schemes, Bull. Seismol. Soc. Am. 101, 1, 141-159, DOI: 10.1785/0120100041.
  • [16] Liu, Y., C. Li, and Y. Mou (1998), Finite-difference numerical modeling of any even-order accuracy, Oil Geophys. Prospect. 33, 1-10 (in Chinese).
  • [17] McMechan, G.A. (1983), Migration by extrapolation of time-dependent boundary values, Geophys. Prospect. 31, 3, 413-420, DOI: 10.1111/j.1365-2478.1983.tb01060.x.
  • [18] Pei, Z. (2004), Numerical modeling using staggered-grid high order finite difference of elastic wave equation on arbitrary relief surface, Oil Geophys. Prospect. 39, 629-634 (in Chinese).
  • [19] Pestana, R.C., and P.L. Stoffa (2009), Rapid expansion method (REM) for timestepping in reverse time migration (RTM). In: 79th SEG Ann. Meeting, 25-30 October 2009, Houston, USA, SEG-2009-2819, Society of Exploration Geophysicists, 2819-2823.
  • [20] Pestana, R.C., and P.L. Stoffa (2010), Time evolution of the wave equation using rapid expansion method, Geophysics 75, 4, T121-T131, DOI: 10.1190/1.3449091.
  • [21] Pestana, R.C., B. Ursin, and P.L. Stoffa (2012), Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media, J. Geophys. Eng. 9, 3, 291, DOI: 10.1088/1742-2132/9/3/291.
  • [22] Tessmer, E. (2011), Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration, Geophysics 76, 4, S177-S185, DOI: 10.1190/1.3587217.
  • [23] Virieux, J. (1986), P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics 51, 4, 889-901, DOI: 10.1190/1.1442147.
  • [24] Yan, H., and Y. Liu (2013), Visco-acoustic prestack reverse-time migration based on the time-space domain adaptive high-order finite-difference method, Geophys. Prospect. 61, 5, 941-954, DOI: 10.1111/1365-2478.1204.
  • [25] Yan, H., Y. Liu, and H. Zhang (2013), Prestack reverse-time migration with a timespace domain adaptive high-order staggered-grid finite-difference method, Explor. Geophys. 44, 2, 77-86, DOI: 10.1071/EG12047.
  • [26] Yang, L., H. Yan, and H. Liu (2014), Least squares staggered-grid finite-difference for elastic wave modelling, Explor. Geophys. 45, 4, 255-260, DOI: 10.1071/EG13087.
  • [27] Zhang, J.-H., and Z.-X. Yao (2013), Optimized finite-difference operator for broadband seismic wave modeling, Geophysics 78, 1, A13-A18, DOI: 10.1190/geo2012-0277.1.
  • [28] Zhang, Y., and J. Sun (2009), Practical issues of reverse time migration: True amplitude gathers, noise removal and harmonic-source encoding, First Break 26, 19-25.
  • [29] Zhang, Y., and G. Zhang (2009), One-step extrapolation method for reverse time migration, Geophysics 74, 4, A29-A33, DOI: 10.1190/1.3123476.
  • [30] Zhang, Y., P. Zhang, and H. Zhang (2010), Compensating for visco-acoustic effects in reverse-time migration. In: 80th SEG Ann. Meeting, 17-22 October 2010, Denver, USA, SEG-2010-3160, Society of Exploration Geophysicists, 3160-3164.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87e29696-e1cb-4f98-accd-7234fce8f167
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.