Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Performance of various materials such as activated carbons, carbon nanotubes, fullerene, and aluminosilicate for aquatic adsorption of micropollutants has been compared. Micropollutants (bisphenol A (BPA) and nonylphenol (NP)) were removed from artificial effluent which was spiked with standards of those chemicals. It was found that nonylphenol was more favorable adsorbed by all the sorbents than BPA. The higher adsorption capacities for BPA and NP showed single walled carbon nanotubes and activated carbon (AKPA). Slightly lower removal efficiencies of the studied micropollutants were observed for the multi-walled carbon nanotubes and activated carbon SX2. Taking into account the porous structure of the sorbents, it can be concluded that the materials containing mesopores had lower sorption capacities for BPA and NP than materials with microporous structure. Ad-sorption of micropollutants was much quicker for the carbon nanotubes than for the activated carbon.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
161--178
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
autor
- Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice, Poland
autor
- Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
- [1] HEEKYONG O., TARO U., DAI S., HYUNOOK K., Effect of natural organic matter on adsorption of ionic and non-ionic pharmaceuticals to granular activated carbon, Environ. Prot. Eng., 2013, 39 (4), 15.
- [2] BANSAL R. C., GOYAL M., Activated carbon adsorption, CRC Taylor ad Francis, Boca Raton 2005.
- [3] PATIÑO Y., DÍAZ E., ORDÓÑEZ S., Performance of different carbonaceous materials for emerging pollutants adsorption, Chemosphere, 2015, 119, 124.
- [4] ҪEҪEN F., AKTAS Ӧ., Activated carbon for water and wastewater treatment, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2011.
- [5] KENNEDY A.M., REINERT A.M., KNAPPE D.R., FERRER I., SUMMERS R.S., Full-and pilot-scale GAC adsorption of organic micropollutants, Water Res., 2015, 68, 238.
- [6] GOLESTANIFAR H., HAIBATI B., AMINI H., DEHGHANI M. H., ASADI A., Removal of hexavalent chromium from aqueous solution by adsorption on -alumina nanoparticles, Environ. Prot. Eng., 2015, 41 (2), 133.
- [7] UPADHYAYULA V., DENG S., MITCHELL M., SMITH G., Application of carbon nanotube technology for removal of contaminants in drinking water. A review, Sci. Total Environ., 2009, 408, 1.
- [8] YU J.-G., ZHAO X.-H., YANG H., CHEN X.-H., YANG Q., YU L.-Y., JIANG J.-H., CHEN X.-Q., Aqueous adsorption and removal of organic contaminants by carbon nanotubes, Sci. Total Environ., 2014, 482–483, 241.
- [9] BOHDZIEWICZ J., KAMIŃSKA G., PAWLYTA M., ŁUKOWIEC D., Comparison of effectiveness of advanced treatment of municipal wastewater by sorption and nanofiltration. Separate processes and integrated systems, Environ. Prot. Eng., 2015, 41 (2), 119.
- [10] GATICA S., BOJAN M., STAN G., COLE M., Quasi-one- and two-dimensional transitions of gases adsorbed on nanotube bundles, J. Chem. Phys., 2001, 114, 3765.
- [11] AGNIHOTRI S., MOTA J., ROSTAM-ABADI M., ROOD M., Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation, Langmuir, 2005, 21, 896.
- [12] PAN B., LIN D., MASHAYEKHI H., XING B., Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials, Environ. Sci. Technol., 2008, 42, 5480.
- [13] BOHDZIEWICZ J., KAMIŃSKA G., Kinetics and equilibrium of the sorption of bisphenol A by carbon nanotubes from wastewater, Water Sci. Technol., 2013, 68 (6), 1306.
- [14] GOGOTSI Y., Carbon Nanomaterials, Taylor & Francis, Boca Raton 2006.
- [15] YANG K., XING B., Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterial in waters, Environ. Pollut., 2007, 145, 529.
- [16] KAMIŃSKA G. BOHDZIEWICZ J., PALACIO L., HERNÁNDEZ A., PRÁDANOS P., Polyacrylonitrile mem-branes modified with carbon nanotubes: characterization and micropollutants removal analysis, Des. Water Treat., 2016, 53, 1344.
- [17] KOWAL A.L., Water Treatment, Wydawnictwo Naukowe PWN, Warsaw 2005 (in Polish).
- [18] TOMCZAK E., Removal of pollutants from aqueous solutions using filled bed column. Modelling of adsorption dynamics, Zeszyty Naukowe, Politechnika Łódzka, 2011, 1102 (in Polish).
- [19] DUDZIAK M., BODZEK M., Removal of estrogenic micropollutants from water solutions by high-pres-sure driven membrane processes. Ochr. Środ., 2009, 31 (3), 33 (in Polish).
- [20] DUDZIAK M., BODZEK M., Separation of bisphenol A by nanofiltration under conditions of membrane surface saturation, Ochr. Środ., 2008, 30 (2), 17 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86cc6c34-7e63-46e3-ae11-302c80ce552a