Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Phase composition and morphology characteristics of ceria-stabilized zirconia powders obtained via sol-gel method with various pH conditions

Autorzy Nakonieczny, D. S.  Paszenda, Z. K.  Basiaga, M.  Radko, T.  Drewniak, S.  Podwórny, J.  Bogacz, W. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN High purity, fine crystalline, degradation-free at low temperature powders have attracted special interest in CAD/CAM prosthetic dentistry full ceramic restorations. This study reports the preparation and characterisation of zirconia-ceria (0.9ZrO20.1CeO2) powders. Materials were obtained from zirconium-n-alkoxide and cerium nitrate hexahydrate in the pH 2–4 and 8–10. Methods: Zirconia-ceria powders were obtained with the sol-gel method in a humid-free environment. Thermal analysis (TGA/DTA) of the as-prepared materials was made for an assessment of its behaviour at elevated temperatures. Specimens were dried at 80°C and calcinated in two stages: at 300°C with soaking time 2.5 h and 850°C with holding time 2.5 h, in order to evaluate the phase transformations. Thermal analyses of the as-dried powders were made for an assessment of its thermal behaviour during heat treatment up to 1000 °C. By X-ray diffraction (XRD), polymorphs of ZrO2 were identified. Additionally, scanning electron microscopy (SEM) and laser particle size distribution (PSD) were involved for characterisation of morphology of the powders. Results: We found a correlation between the pH of the colloidal system and the morphology of the as-obtained powders. Based on analysis (SEM,PSD), structures were identified known as soft and hard agglomerates. Conclusions: In summary, it can be stated differences were found between powder morphology depending on the used pH, which can be crucial for powder densification during sintering and compacting green bodies which, as a consequence, may be crucial for the lifetime of zirconia prostheses. Correlations between phase composition and pH are difficult to grasp, and require further more sophisticated studies.
Słowa kluczowe
PL zol-żel   bioceramika   tlenek cyrkonu   właściwości termiczne   morfologia proszków  
EN sol-gel   bioceramics   zirconia   oxide dopants   thermal properties   powder morphology  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 2
Strony 21--30
Opis fizyczny Bibliogr. 25 poz., rys., tab., wykr.
autor Nakonieczny, D. S.
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelt 40 st., 41-800 Zabrze, Poland,
autor Paszenda, Z. K.
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelt 40 st., 41-800 Zabrze, Poland
autor Basiaga, M.
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelt 40 st., 41-800 Zabrze, Poland
autor Radko, T.
  • Institute for Chemical Processing of Coal, Zamkowa Str. 1, 41-803 Zabrze; Poland
autor Drewniak, S.
  • Department of Optoelectronics, Silesian University of Technology, B. Krzywoustego st., 2, 44 100 Gliwice, Poland
autor Podwórny, J.
  • Refractory Materials Division, Institute of Ceramics and Buildings Materials, Toszecka 99 st., 44-100 Gliwice, Poland
autor Bogacz, W.
  • Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, M. Strzody 7 st., 44-100 Gliwice, Poland
[1] Amaral M., Valandro L. F., Bottino M. A., Souza R. O. A., Low-temperature degradation of a Y-TZP ceramic after surface treatments, J. Biomed. Mater. Research Part B: App. Biomater., 2013, 101, 1387-1392.
[2] Basu B., Vleugels J., Van Der Biest O., Transformation behavior of tetragonal zirconia: role of dopant content and distribution, Mater. Sci. Eng., 2004, A366, 338-347.
[3] Chevalier J.,. Gremillard L., Virkar A.V., Clarke D.R., The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc., 2009, 92, 9, 1901–1920.
[4] Dasari H. P., Ahn J. S., Ahn K., Park S. Y., Hong J., Kim H., Yoon K. J., Son J. W., Lee H. W., Lee J. H., Synthesis, sintering and conductivity behavior of ceria-doped Scandiastabilized zirconia, Sol. State Ion., 2014, 264, 103-109.
[5] Callon G. J., Goldie D. M., Dibb M. F., Cairns J. A.: X-ray diffraction analysis of yttria stabilized zirconia powders by an organic sol-gel method, J. Mater. Sci. Lett., 2000, 19, 1689-1691.
[6] Fabbri P., Piconi C., Burresi E., Maganami G., Mazzanti G., Mingazzini C., Liftime estimation of a zirconia-alumina composite for biomedical applications, Dent. Mater., 2014, 30, 138-142.
[7] Gremillard al. Degradation of implant meterials, in Degradation of implant meterials, (ed. N. Eliaz), 195-240; 2012,New York, Springer.
[8] Guo X., Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules, Chem. Mater., 2004, 16, 3988-3994.
[9] Guo X., Zhang Z., Grain size dependent grain boundary defect structure: case of doped zirconia, Acta Mater., 2003, 51, 2539-2547.
[10] Hallmann L., Ulmer P., Reusser E., Louvel M., Hämmerle Ch. H. F., Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia, J. Eur. Ceram. Soc., 2012, 32, 4091-4104. (13)
[11] Huang W., Yang J., Wang Ch., Zou B., Meng X., Wang Y., Cao X., Wang Z., Effects of Zr/Ce molar ratio and water content on thermal stability and structure of ZrO2-CeO2 mixed oxide prepared via sol-gel process, Mater. Res. Bull, 2012, 47, 2349–2356.
[12] Inokoshi M., Zhang F., De Munck J., Minakuchi S., Naert I., Vleugels J., Van Meerbeek B.,. Vanmeensel K., Influence of sintering conditions on low-temperature degradation of dental zirconia, Dent. Mater., 2014, 30, 669-678.
[13] Kelly J. R, Denry I., Stabilized zirconia as a structural ceramic: An overwiew, Dent Mater, 2008, 24, 289-298.
[14] Keuper M., Berthold Ch., Nickel K. G., Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature, Acta Biomater., 2014, 10, 951-959.
[15] Málek J., The applicability of Johnson-Mehl-Avrami model in thermal analysis of the crystallization kinetics of glasses, Themochem. Acta., 1995, 267, , 61-73.
[16] Mamana N., Díaz-Parralejo A., Ortiz L. , Bajo S.,. Caruso R., Influence of the synthesis proces on the features of Y2O3-stabilized ZrO2 powders obtained by the sol-gel method, Ceram. Int., 2014, 40, 6421-6426.
[17] Miyazaki T., Nakamura T., Matsumura H., Ban S., Kobayashi T., Review: Current status of zirconia restoration, J Prost Res, 2013, 57, 236-261.
[18] Morrissey A., Tong J., Gorman B. P., Reimanis I. E., Characterization of nickel ions in nickel-doped yttria-stabilized zirconia, J. Am. Ceram. Soc., 2014, 97, (4), 1041-1047.
[19] Morteza Hajizadeh-Oghaz, Reza Shoja Razavi, Ali Ghasemi, The effect of solution pH value on the morphology of Ceria-Yttria co stabilized zirconia particles prepared using the polymerizable complex method, J Clust Sci., 2016, 27, 469-483.
[20] Nakonieczny D., Walke W., Majewska J., Paszenda Z., Characterization of magnesiadoped yttria-stabilized zirconia powders for dental technology applications, Acta of Bioeng. Biomech., 2014, 16, (4), 99-106.
[21] Nakonieczny D., Paszenda Z., Drewniak S., Radko T., Lis M., ZrO2-CeO2 ceramic powders obtained from a sol-gel process using acetylacetone as a chelating agent for potential application in prosthetic dentistry Acta of Bioeng. Biomech. accepted to print. 2016, 3 (18)
[22] Naumenko A., Gnatiuk I., Smirnova N., Eremenko A., Characterization of sol-gel derived TiO2/ZrO2 films and powders by Raman spectroscopy, Thin Solid Films, 2012, 520, 4541–4546.
[23] Tanaka S., Takaba M., Ishiura Y., Kamimura E., Baba K., A 3-year follow-up of ceriastabilized zirconia/alumina nanocomposites (Ce-TZP/A) frameworks for fixed dental prostheses, J. Prost. Res., 2015, 59, 55-61.
[24] Stoia M., Barvinschi P., Barbu-Tudoran L., Negrea A., Barvinschi F., Influence of thermal treatment on the formation of zirconia nnaostructured powder by thermal decomposition of different precursors, J. Cryst. Growth, 2013, 381, 93-99.
[25] Wojda S., Szoka B., Sajewicz E., Tribological characteristics of enamel-dental material contacts investigeted in vitro, Acta of Bioeng. Biomech, 2015 17(1), 21-29.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-86462a1a-c22a-4743-a70c-07db2c457b56
DOI 10.5277/ABB-00621-2016-03