Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Tunnel Progress on the Settlement of Existing Piled Foundation

Treść / Zawartość
Warianty tytułu
Języki publikacji
Tunnel construction below or adjacent to piles will affect the performance and eventually the stability of piles due to ground deformation resulting in the movement of piles and changes in the axial force distribution along the piles. A three dimensional finite element analysis using PLAXIS 3D (2013) was performed to study the behaviour of a single pile and 3 x 3 piles group during the advancement of shield tunnelling in ground. The 10-node tetrahedral elements were used to model both the soil and the tunnel lining. The Hardening Soil (HS) model was used to simulate the soil structure interaction at the tunnel-soil interface. An isotropic elastic model was used for the pile, piles cap, tunnel lining and tunnel boring machine shield (TBM). Several parametric studies were attempted including the longitudinal, lateral, and vertical tunnel location relative to pile embedded in different types of soil (clay or sand). The results showed that the pile head settlement increases during the tunnelling advancement in larger values than that for ground surface settlement. A zone of influence was determined in the range of twice the tunnel diameter in the longitudinal direction (forward and backward of the pile), and transverse direction (left and right of the tunnel centreline). If the tunnel boring is kept off this zone then there is no fear of pile collapse.
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
  • Al- Farabi University College, Civil Engineering Department
  • Mustansiriyah University, College of Engineering
  • Al- Nahrain University, College of Engineering
  • [1] Basile, F. (2014). Effects of tunnelling on pile foundations. Soils and Foundations, 54(3), 280-295. DOI: 10. 1016/j. sandf.2014.04.004.
  • [2] Zidan, A.F. and Ramadan, O.M.O. (2015). Three dimensional numerical analysis of the effects of tunnelling near piled structures, KSCE Journal Civil Engineering, 19(4), 917-928. DOI: 10.1007/s12205-014-0741-6.
  • [3] Bezuijen, A. and van der Schrier, J. S. (1994). The influence of a bored tunnel on pile foundations. In Proceeding of Centrifuge 94, (pp.681-686). Belkama.
  • [4] Boonsiri, I. and Takemura, J. (2015). Observation of Ground Movement with Existing Pile Groups Due to Tunneling in Sand Using Centrifuge Modelling. Geotechnical and Geological Engineering, 33(3), 621-640. DOI: 10.1007/s10706-015-9845-0.
  • [5] Bowles, J. E. (1997). Foundation Analysis and Design (5th ed). McGraw-Hill Companies, Inc.
  • [6] Brinkgreve, R. B. J. Engin, E. and Swolfs, W. M. (2013) eds, Plaxis 3D tutorial manual.
  • [7] Chapman, D., Metje, N., Stärk, A. (2010). Introduction to Tunnel Construction (2nd ed). CRC Press, Taylor & Francis Group.
  • [8] Fattah, M. Y., Shlash, K. T. & Al-Soud, M. S. (2012). Boundary Element Analysis of a Lined Tunnel Problem. International Journal of Engineering, IJE TRANSACTIONS B: Applications Vol. 25, No. 2, (May 2012), pp.87-94.
  • [9] Forth, R. A., & Thorley, C. B. B. (1996). Hong Kong Island line predictions and performance. In Proceeding of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground (pp.677-682), London, Balkema.
  • [10] Goh, K.H. & Mair, R.J. (2014). Response of framed buildings to excavation-induced movements. Soils and Foundations, 54 (3), 250–268.
  • [11] Hergarden, H. J. A. M., Van der Poel, J. T. & Van der Schrier, J. S. (1996). Ground movements due to tunnelling: Influence on pile foundations. In Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, April 15-17 (pp.519-524), London. R. J. Mair & R. N. Taylor (eds).
  • [12] Jacobsz, S. W., Standing, J. R., Mair, R. J. Hagiwara, T. & Sugiyama, T. (2004). Centrifuge modeling of tunneling near driven piles. Soils & Foundations, 44(1) 49-56. DOI: 10.3208/ sandf.44.49.
  • [13] Kaalberg, F. J. Lengkeek, H. J. and Teunissen, E.A.H. (1999), “Evaluatie van de meetresultaten van het proefpalenprojek ter plaatse van de tweede Heinenoord tunnel” (in Dutch), Adviesbureau Noord/Zuidlijn, Amsterdam (No. R981382).
  • [14] Lee, C.J. (2012). Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock. Tunnelling and Underground Space Technology, (32), 132–142. DOI: 10.1016/j.tust.2012.06.005.
  • [15] Lee, C.J. (2013). Numerical analysis of pile response to open face tunneling in stiff clay. Computers and Geotechnics, (51), 116–127. DOI: 10.1016/j.compgeo.2013.02.007.
  • [16] Lee, C.J. & Jacobsz, S.W. (2006). The Influence of Tunnelling on Adjacent Piled Foundations. Tunnelling and Underground Space Technology, 21 (3–4), 430-435. DOI: 10.1016/j. tust.2005.12.072.
  • [17] Lee, G.T.K. and Ng, C.W.W. (2006). Three-dimensional numerical simulation of tunnelling effects on an existing pile. In K.J. Bakker, A. Bezuijen, W. Broere, and E.A. Kwast (eds) Geotechnical Aspects of Underground Construction in Soft Ground (pp. 139-144). London: Taylor & Francis Group.
  • [18] Lee, C.J. Jun, S.H. Yoo, N.J. & Kim, G.W. (2007). The effects of tunnelling on an adjacent single pile. In Barták, J., Hrdina, I, Romancov, G. & Zlámal, J. (eds), Underground Space – the 4th Dimension of Metropolises (pp. 527-532). London, Taylor and Francis Group.
  • [19] Lee, C.J. Jeon, Y.J. Kim, S.H. and Park, I.J. (2016). The influence of tunneling on pre-existing piled foundation in weathered soil. Geomechanics and Engineering, 11(4), 553-570. DOI: 10.12989/ gae.2016.11.4.553
  • [20] Loganathan, N. Poulos, H. G. & Stewart, D. P. (2000). Centrifuge model testing of tunnelling-induced ground and pile deformations. Geotechnique, 50(3), 283–294. DOI: 10.1680/ geot.2000.50.3.283.
  • [21] Mair, R. J. (1993). Developments in geotechnical engineering research: Application to tunnels and deep excavations. In Proceedings of the Institution of Civil Engineers, Civil Engineerig, February 1993. 97(1), 27–41.
  • [22] Mair, R. & Williamson, M. (2014). The influence of tunnelling and deep excavation on piled foundations. In Proceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, 25-27 August 2014 (pp. 21-30). Seoul, South Korea, C., Park, S.-W., Kim, B., Ban, H. (Eds.), Taylor and Francis.
  • [23] Miro, S., Hartmann,D., Schanz, T., & Zarev, V. (2012). System Identification Methods for Ground Models in Mechanized Tunneling. In 19th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, 4-6 July 2012. University Weimar, Germany. K. Gürlebeck, T. Lahmer and F. Werner (eds.)
  • [24] Mazek, S.A. (2014). Evaluation of surface displacement equation due to tunneling in cohesionless soil. Geomechanics and Engineering, 7(1), 55-73. DOI: 10.12989/gae.2014.7.1.055.
  • [25] Ng, C.W.W., Lu, H. and Peng, S.Y. (2013). Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile. Tunnelling and Underground Space Technology, (43), 350-361. DOI: 10.1016/j.tust.2012.07.008.
  • [26] Zarev, V. (2016). Model identification for the adaption of numerical simulation models – Application to mechanized shield tunneling. Ph.D. Dissertation, Ruhr University, Bochum, Germany.
  • [27] Yang, M., Sun, Q., L., MA K. (2011). Three-Dimensional Finite Element Analysis on Effects of Tunnel Construction on nearby Pile Foundation. Journal of Central South University of Technology. 18(3), 909-916. DOI: 10.1007/s11771-011-0780-9.
  • [28] Yoo, C. (2013). Interaction between Tunneling and Bridge Foundation a 3D Numerical Investigation. Computers and Geotechnics. (49), 70–78. DOI: 10.1016/compgeo.2012.11.005.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.