Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-8535e86f-3659-4526-a3a2-9f039df4bda8

Czasopismo

Przegląd Elektrotechniczny

Tytuł artykułu

Comparison of selected performances of biological and electronic information processing structures

Autorzy Moškon, M.  Zimic, N.  Stražar, M.  Mraz, M. 
Treść / Zawartość http://pe.org.pl/
Warianty tytułu
PL Porównanie wybranych parametrów struktur przepływu informacji w systemie biologicznych i elektronicznym
Języki publikacji EN
Abstrakty
EN We present the information processing perspective on biological systems. Several metrics, similar to the ones used in digital electronic circuits, are introduced. These metrics allow us to compare biological information processing structures with their electronic counterparts, to define the ones with the best dynamical properties, analyse their compatibility and most importantly, automatize their design. Regarding the metric values obtained and used on a simple example, target applications of synthetic information processing biological structures are discussed.
PL W artykule opisano zagadnienie przepływu informacji w systemach biologicznych. Zastosowano tu odwzorowanie na elementach i obwodach elektronicznych, co pozwoliło na analizę ich własności, w tym dynamicznych oraz zautomatyzowanie projektowania takich modeli. Zawarto także omówienie otrzymanych wyników badań.
Słowa kluczowe
PL obliczenia niekonwencjonalne   GRN   modelowanie   biologia obliczeniowa  
EN unconventional computing   gene regulatory networks   modelling   computational biology  
Wydawca Wydawnictwo SIGMA-NOT
Czasopismo Przegląd Elektrotechniczny
Rocznik 2013
Tom R. 89, nr 2a
Strony 166--169
Opis fizyczny Bibliogr. 17 poz., wykr.
Twórcy
autor Moškon, M.
  • Faculty of Computer and Information Science, University of Ljubljana, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia, miha.moskon@fri.uni-lj.si
autor Zimic, N.
  • Faculty of Computer and Information Science, University of Ljubljana, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia, niko.zimic@fri.uni-lj.si
autor Stražar, M.
  • Faculty of Computer and Information Science, University of Ljubljana, Tržaška cesta 25, SI1000 Ljubljana, Slovenia, martin.strazar@ksok.si
autor Mraz, M.
  • Faculty of Computer and Information Science, University of Ljubljana, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia, miha.mraz@fri.uni-lj.si
Bibliografia
[1] A. Cheng and T. K. Lu, Synthetic Biology: An Emerging Engineering Discipline, Annual Review of Biomedical Engineering, 14 (2012), 155–178
[2] M. Thattai and A. v. Oudenaarden, Intrinsic noise in gene regulatory networks, Proceedings of the National Academy of Sciences, 98 (2001), 8614–8619
[3] P. R. Patnaik, External, extrinsic and intrinsic noise in cellular systems: analogies and implications for protein synthesis, Biotechnology and Molecular Biology Review, 1 (2006), 121–127
[4] I. Lestas, J. Paulsson, N. E. Ross, and G. Vinnicombe, Noise in gene regulatory networks, IEEE Transactions on Automatic Control, 53 (2008), 189–200
[5] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), 1183–1186
[6] P. S. Swain, M. B. Elowitz, and E. D. Siggia, Intrinsic and extrinsic contributions to stochasticity in gene expression, Proceedings of the National Academy of Sciences, 99 (2002), 12795–12800
[7] D. Orrell, S. Ramsey, P. de Atauri, and H. Bolouri, A method for estimating stochastic noise in large genetic regulatory networks, Bioinformatics, 21 (2005), 208–217
[8] A. Hilfinger and J. Paulsson, Separating intrinsic from extrinsic fluctuations in dynamic biological systems, Proceedings of the National Academy of Sciences, 108 (2011), 12167–12172
[9] T. o. Scheper, D. Klinkenberg, C. Pennartz, and J. v. Pelt, A mathematical model for the intracellular circadian rhythm generator, The Journal of Neuroscience, 19 (1999), 40–47
[10] A. Becskei and L. Serrano, Engineering stability in gene networks by autoregulation, Nature, 405 (2000), 590–593
[11] W. K. Smits, O. P. Kuipers and J. W. Veening, Phenotypic variation in bacteria: the role of feedback regulation, Nature Reviews Microbiology, 4 (2006), 259–271
[12] U. Alon, An Introduction to Systems Biology, Chapman & Hall, (2007)
[13] M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, 403 (2000), 335–338
[14] J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler, Mechanisms of noise-resistance in genetic oscillators, Proceedings of the National Academy of Sciences, 99 (2002), 5988–5992
[15] W. An and J. W. Chin, Synthesis of orthogonal transcriptiontranslation networks, Proceedings of the National Academy of Sciences, 106 (2009), 8477–8482
[16] T. K. Lu, A. S. Khalil and J. J. Collins, Next-generation synthetic gene networks, Nature Biotechnology, 27 (2009), 1139–1150
[17] B. Šter, R. Gaber, M. Avbelj, R. Jerala and A. Dobnikar, Design of information processing in cells using artificial gene repressors, Przegląd Elektrotechniczny, 88 (2012), 105–109
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-8535e86f-3659-4526-a3a2-9f039df4bda8
Identyfikatory