Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green roofs dissemination regarding their potential contribution in addressing the UHI effect

Treść / Zawartość
Warianty tytułu
Języki publikacji
The article aims at summarising the state of the art in the efforts of researchers and innovators to find viable solutions to mitigate the urban heat island (UHI) effect. This effect is loosely connected with the greenhouse effect, however, it certainly creates a severe negative synergy together with it. As green roofs are a well-known answer how to address the UHI effect, the ways how to make their massive and global deployment convenient are discussed. Initially, the differences and similarities between urbanisation in developed and developing countries are described. Then the paper depicts solutions, especially synergic ones, for making the dissemination of green roofs viable, such as rainwater and energy harvesting or urban agriculture. Then the authors conclude that retrofitting the existing roofs is the only method for reaching the desired scale and discuss available business models necessary for introducing the prosumer approach to the retrofitting.
  • Research and Innovation Centre Pro-Akademia, ul. Innowacyjna 9/11, 95-050 Konstantynow Łódzki, Poland,
  • Energy and Environmental Economics and Policy Group (3EP), Department of Environmental Science and Technology, Cyprus University of Technology Athinon and Anexartisias Corner, P.O. Box 50329, 3603 Lemesos, Cyprus
  • Energy and Environmental Economics and Policy Group (3EP), Department of Environmental Science and Technology, Cyprus University of Technology Athinon and Anexartisias Corner, P.O. Box 50329, 3603 Lemesos, Cyprus,
  • Energy and Environmental Economics and Policy Group (3EP), Department of Environmental Science and Technology, Cyprus University of Technology Athinon and Anexartisias Corner, P.O. Box 50329, 3603 Lemesos, Cyprus
  • Faculty of Architecture and Design, „RISEBA” University of Business, Arts and Technology, Durbes iela 4, Riga, Latvia,
  • Agricultural Economics & Farm Management Department, Federal University of Agriculture, PMB 2240, Abeokuta, Ogun State, Nigeria,
  • Brimatech Services GmbH, Lothringerstrase 14/3, A–1030 Vienna, Austria,
  • [1] United Nations, Department of Economic and Social Affairs, Population Division, World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). Retrieved 06. 07. 2018
  • [2] A. Mazlan, Between Vision and Reality of Becoming a Smart City, 3rd Smart Cities Conference, Kuala Lumpur 2017 Retrieved 06. 07. 2018
  • [3] Heat Island Effect, Environmental Protection Agency, Retrieved 06. 07. 2018
  • [4] S.A. Changnon Jr., K.E. Kunkel, B.C. Reinke, Impacts and responses to the 1995 heat wave: A call to action, Bulletin of the American Meteorological Society. 77 (1996), 1497–1506. doi:10.1175/1520-0477(1996)077<1497:IARTTH>2.0.CO;2
  • [5] C.C. van Heerwaarden, J. Vila-Guerau de Arellano, Relative humidity as an indicator for cloud formation over heterogeneous land surfaces", Journal of the Atmospheric Sciences. 65 (2008), 3263–3277.
  • [6] E. Shochat, P.S. Warren, S.H. Faeth, N.E. Mclntyre, D. Hope, From Patterns to Emerging Processes in Mechanistic Urban Ecology, Trends in Ecology & Evolution. 21 (2006) 3. doi:10.1016/j.tree.2005.11.019.
  • [7] J.E. Walsh, W.L. Chapman, V. Romanovsky, J.H. Christensen, M. Stendel, Global Climate Model Performance over Alaska and Greenland, J. Climate. 21 (23) (2008), 6156–74. doi:10.1175/2008JCLI2163.1.
  • [8] S.V. Nghiem, I.G. Rigor, D.K. Perovich, P. Clemente-Colon, J.W. Weatherly, G. Neumann, Rapid reduction of Arctic perennial sea ice, Geophysical Research Letters. 34 (2007) L19504
  • [9] L. Wiesboeck et al., Heat Vulnerability, Poverty and Health Inequalities in Urban Migrant Communities: A nPilot Study from Vienna, in: W. Leal Filho, U.M. Azeiteiro, F. Alves (Eds.), Climate Change and Health: Improving Resilience and Reducing Risks, Springer, Berlin, 2016, p. 392.
  • [10] R.A.W. Albers, P.R. Bosch, B. Blocken, A.A.J.F. Van Den Dobbelsteen, L.W.A. Van Hove, T.J.M. Spit et al., Overview of challenges and achievements in the Climate Adaptation of Cities and in the Climate Proof Cities program, Building and environment. 83 (2015) 1-10.
  • [11] Climate Change 2013: The Physical Science Basis, IPCC Fifth Assessment Report, WGI AR5 (2013) 5.
  • [12] Global Footprint Network, Data Sources, Retrieved 06. 07. 2018
  • [13] M. Georgescu, P.E. Morefield, B.G. Bierwagen, C.P. Weaver, Urban Adaptation Can Roll Back Warming of Emerging Megapolitan Regions, Proceedings of the National Academy of Sciences of the United States of America. 111 (2014) 2909–2914. doi:10.1073/pnas.1322280111
  • [14] National Footprint Accounts edition (Data Year 2014); building on World Development Indicators, The World Bank (2016); U.N. Food and Agriculture Organization, Rome, 2018.
  • [15] N. Garrison, C. Horowitz, C.A. Lunghino, How Green Roofs and Cool Roofs Can Reduce Energy Use, Address Climate Change, and Protect Water Resources in Southern California, Natural Resources Defense Council & Emmett Center on Climate Change and the Environment at UCLA School of Law, Report 12-06-B, Los Angeles, 2012.
  • [16] City of Toronto, Green Roof Bylaw Retrieved 06. 07. 2018
  • [17] Green Roofs Copenhagen, Retrieved 06. 07. 2018
  • [18] International Green Roof City Network. Case Study Vienna, Austria, Retrieved 06. 07. 2018
  • [19] G. Prokop, H. Jobstmann, A. Schonbauer, Overview of best practices for limiting soil sealing or mitigating its effects in EU-27, European Commission, Final report, Brussels, 2011.
  • [20] T. Carter, A. Keeler, Life-cycle cost–benefit analysis of extensive vegetated roof systems, Journal of environmental management. 87.3 (2008) 350-363.
  • [21] I. Ziogou, A. Michopoulos, V. Voulgari, Th. Zachariadis, Energy, environmental and economic assessment of electricity savings from the operation of green roofs in urban office buildings of a warm Mediterranean region, Journal of Cleaner Production. 168 (2017) 346-356.
  • [22] P.B. Cobbinah, M.O. Erdiaw-Kwasie, P. Amoateng, Africa’s urbanization: implications for sustainable development, Cities. 47 (2015) 62-67.
  • [23] United Nations Department of Economic and Social Affairs (UN DESA). 2018 Revision of World Urbanization Prospects., Retrieved 06. 07. 2018
  • [24] UN HABITAT. State of the World’s Cities 2006/07. Retrieved 06. 07. 2018
  • [25] B. Cohen, Urbanization in developing countries: Current trends and future projections, and key challenges for sustainability, Technology in Society. 28 (2006) 63-80.
  • [26] A.P.C. Chan, A. Darko, Strategies to promote green building technologies adoption in developing countries: The case of Ghana. Building and Environment, 130 (2018) 74-84.
  • [27] A.P.C. Chan, A. Darko, A.O. Olanipekun, E.E. Ameyaw, Critical barriers to green building technologies adoption in developing countries: the case of Ghana. Journal of Cleaner Production, 172 (2018) 1067-1079.
  • [28] S. Lotfi, An investigation of urban green roof development in developing countries (a case study of Iran), Advances in Civil, Environmental, and Materials Research (ACEM’ 12),, Retrieved 06. 07. 2018
  • [29] O. Saadatian, K. Sopian, E. Salleh, C.H. Lim, S. Riffat, E. Saadatian et al., A review of energy aspects of green roofs, Renew Sustain Energy Rev. 23 (2013) 155–168. doi:10.1016/j.rser.2013.02.022.
  • [30] A.B. Besir, E. Cuce, Green roofs and facades: A comprehensive review, Renew Sustain Energy Rev. 82 (2018) 915–939. doi:10.1016/j.rser.2017.09.106.
  • [31] P. Bevilacqua, D. Mazzeo, R. Bruno, N. Arcuri, Experimental investigation of the thermal performances of an extensive green roof in the Mediterranean area, Energy Build. 122 (2016) 63–69. doi:10.1016/j.enbuild.2016.03.062.
  • [32] Y. He, H. Yu, N. Dong, H. Ye, Thermal and energy performance assessment of extensive green roof in summer: A case study of a lightweight building in Shanghai, Energy Build. 127 (2016) 762–773. doi:10.1016/j.enbuild.2016.06.016.
  • [33] X. Tang, M. Qu, Phase change and thermal performance analysis for green roofs in cold climates, Energy Build. 121 (2016) 165–175. doi:10.1016/j.enbuild.2016.03.069.
  • [34] M. Taleghani, M. Tenpierik, A. van den Dobbelsteen, D.J. Sailor, Heat mitigation strategies in winter and summer: Field measurements in temperate climates, Build Environ. 81 (2014) 309–319. doi:10.1016/j.buildenv.2014.07.010.
  • [35] A.H. Refahi, H. Talkhabi, Investigating the effective factors on the reduction of energy consumption in residential buildings with green roofs, Renew Energy. 80 (2015) 595–603. doi:10.1016/j.renene.2015.02.030.
  • [36] C.M. Silva, M.G. Gomes, M. Silva, Green roofs energy performance in Mediterranean climate, Energy Build. 116 (2016) 318–325. doi:10.1016/j.enbuild.2016.01.012.
  • [37] V. Costanzo, G. Evola, L. Marletta, Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs, Energy Build. 114 (2016) 247–255. doi:10.1016/j.enbuild.2015.04.053.
  • [38] U. Berardi, The outdoor microclimate benefits and energy saving resulting from green roofs retrofits, Energy Build. 121 (2016) 217–229. doi:10.1016/j.enbuild.2016.03.021.
  • [39] C.P. Skelhorn, G. Levermore, S.J. Lindley, Impacts on cooling energy consumption due to the UHI and vegetation changes in Manchester, UK, Energy Build. 122 (2016) 150–159. doi:10.1016/j.enbuild.2016.01.035.
  • [40] S.S. Alcazar, F. Olivieri, J. Neila, Green roofs: Experimental and analytical study of its potential for urban microclimate regulation in Mediterranean–continental climates, Urban Clim. 17 (2016) 304–317. doi:10.1016/j.uclim.2016.02.004.
  • [41] T.E. Morakinyo, K.W.D. Kalani, C. Dahanayake, E. Ng, C.L. Chow, Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study, Energy Build. 145 (2017) 226–237. doi:10.1016/j.enbuild.2017.03.066.
  • [42] S.S.G. Hashemi, H. Bin Mahmud, M.A. Ashraf, Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review, Renew Sustain Energy Rev. 52 (2015) 669–679. doi:10.1016/j.rser.2015.07.163.
  • [43] M. Karteris, I. Theodoridou, G. Mallinis, E. Tsiros, A. Karteris, Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data, Renew Sustain Energy Rev. 58 (2016) 510–525. doi:10.1016/j.rser.2015.11.098.
  • [44] A. Volder, B. Dvorak, Event size, substrate water content and vegetation affect storm water retention efficiency of an un-irrigated extensive green roof system in Central Texas, Sustain Cities Soc. 10 (2014) 59–64. doi:10.1016/j.scs.2013.05.005.
  • [45] Q. Zhang, L. Miao, X. Wang, D. Liu, L. Zhu, B. Zhou et al., The capacity of greening roof to reduce stormwater runoff and pollution, Landsc Urban Plan. 144 (2015) 142–150. doi:10.1016/j.landurbplan.2015.08.017.
  • [46] R. Nawaz, A. McDonald, S. Postoyko, Hydrological performance of a full-scale extensive green roof located in a temperate climate, Ecol Eng. 82 (2015) 66–80. doi:10.1016/j.ecoleng.2014.11.061.
  • [47] B.G. Johannessen, H.M. Hanslin, T.M. Muthanna, Green roof performance potential in cold and wet regions. Ecol Eng. 106 (2017) 436–447. doi:10.1016/j.ecoleng.2017.06.011.
  • [48] F. Viola, M. Hellies, R. Deidda, Retention performance of green roofs in representative climates worldwide, J Hydrol. 553 (2017) 763–772. doi:10.1016/j.jhydrol.2017.08.033.
  • [49] C. Szota, C. Farrell, N.S.G. Williams, S.K. Arndt, T.D. Fletcher, Drought-avoiding plants with low water use can achieve high rainfall retention without jeopardising survival on green roofs, Sci Total Environ. 603–604: 2017;340–51. doi:10.1016/j.scitotenv.2017.06.061.
  • [50] S.S. Cipolla, M. Maglionico, I. Stojkov, A long-term hydrological modelling of an extensive green roof by means of SWMM, Ecol Eng. 95 (2016) 876–887. doi:10.1016/j.ecoleng.2016.07.009.
  • [51] C. Szota, T.D. Fletcher, C. Desbois, J.P. Rayner, N.S.G. Williams, C. Farrell, Laboratory tests of substrate physical properties may not represent the retention capacity of green roof substrates in situ, Water (Switzerland). 9 (2017) doi:10.3390/w9120920.
  • [52] I. Buffam, M.E. Mitchell, R.D. Durtsche, Environmental drivers of seasonal variation in green roof runoff water quality, Ecol Eng. 91 (2016) 506–514. doi:10.1016/j.ecoleng.2016.02.044.
  • [53] J. Hill, J. Drake, B. Sleep, Comparisons of extensive green roof media in Southern Ontario, Ecol Eng. 94 (2016) 418–426. doi:10.1016/j.ecoleng.2016.05.045.
  • [54] S. Beecham, M. Razzaghmanesh, Water quality and quantity investigation of green roofs in a dry climate, Water Res. 70 (2015) 370–384. doi:10.1016/j.watres.2014.12.015.
  • [55] X. Wang, Y .Tian, X. Zhao, The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality, Sci Total Environ. 592 (2017) 465–476. doi:10.1016/j.scitotenv.2017.03.124.
  • [56] U.N. Food and Agriculture Organization in collaboration with U.N. Centre for Human Settlements (Habitat), Feeding the cities: The role of urban agriculture – factsheet, FAO, Rome, 1999.
  • [57] U.N. Food and Agriculture Organization, Fighting poverty and hunger: What role for Urban agriculture. Retrieved 06. 07. 2018
  • [58] L.J.A. Mougeot, Growing better cities: Urban agriculture for sustainable development, International Development Research Centre, Ottawa, 2006.
  • [59] M. Hendrickson, M. Porth, Urban Agriculture-Best Practices and Possibilities, University of Missouri Extension, St. Louis, MO, 2012.
  • [60] C.G. Shabbir, J. Smit, A. Ratta, J. Nasr, Urban Agriculture: Food, Jobs and Sustainable Cities, United Nations Development Programme, New York, NY, 1996.
  • [61] M.U. Agbonlahor, S. Momoh, A.O. Dipeolu, Urban vegetable crop production and production efficiency, Int J Veg Sci. 13 (2007) 63–72. doi:10.1300/J512v13n02_06
  • [62] T. Osmundson, Roof gardens: history, design, and construction. Greenbacks from green roofs: forging a new industry in Canada, Canadian Mortgage and Housing Corporation, Ottawa, 1999.
  • [63] B. Engelhard, Rooftop to tabletop: Repurposing urban roofs for food production. An unpublished Master’s Thesis in Landscape Architecture, University of Washington, Seattle, WA, 2010.
  • [64] M. Ableman, Agriculture's Next Frontier: How urban farms could feed the world, UTNE Reader. 102 (2000) 60–65.
  • [65] B. Engelhard, Green Roofs Will Flourish: Obstacles and Solutions in U.S. Green Roof Retrofits. Research paper for LARCH 561, University of Washington, Seattle, WA, 2008.
  • [66] L.L. Sheung, Rooftop Garden: Planting Seeds of Service, The Teacher's network, Boston, MA, 2001.
  • [67] R. Earles, Sustainable Agriculture: An Introduction, ATTRA: The National Sustainable Agriculture Information Service, Melbourne, Vic., 2005.
  • [68] G. Trauger, S. McFadden, Farms of Tomorrow Revisited: Community Supported Farms, Farm Supported Communities, Biodynamic Farming and Gardening Association, Kimberton, PA, 1997.
  • [69] J. St Lawrence, Urban agriculture: the potential of rooftop gardening. An unpublished Master’s Thesis in Environmental Studies, York University, Toronto, Ont., 1996.
  • [70] L.J. Pearson, L. Pearson, C.J. Pearson, Sustainable urban agriculture: Stocktake and opportunities, International Journal of Agricultural Sustainability. 8 (2010) 7-19.
  • [71] Le Corbusier, Five points of Architecture, in: Le Corbusier, Towards a New Architecture, J. Rodker, London, 1931. Reprint: Dover Publications, New York, 1985.
  • [72] E.C. Snodgrass, L. McIntyre, The Green Roof Manual: A Professional Guide to Design, Installation, and Maintenance, first ed., Timber Press, Portland, OR, 2010.
  • [73] V. Bokalders, M. Bloka, Ekoloģiskās būvniecības rokasgrāmata: kā projektēt veselīgas, racionālas un ilgtspējīgas ēkas, Domas spēks, Riga, 2013.
  • [74] H. Toxopeus, F. Polzin, Characterizing nature-based solutions from a business model and financing perspective. Deliverable 1.3 Part V of the H2020 project “Naturvation” Retrieved 06.07.2018
  • [75] N.M.P. Bocken, S.W. Short, P. Rana, S. Evans, A literature and practice review to develop sustainable business model archetypes, Journal of Cleaner Production. 65 (2014) 42-56.
  • [76] A. Khare, Beckman, N. Crouse, Cities addressing climate change: Introducing a tripartite model for sustainable partnership. Sustainable Cities and Society. 1(4) (2011) 227-235.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.