
http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-84eb52c5-4426-48d2-abd5-dbd6977a8745

Czasopismo |
Fatigue of Aircraft Structures |
|||||||||
Tytuł artykułu |
Identification of Delamination in Composite Beams using the Fractal Dimension-Based Damage Identification Algorithm |
|||||||||
Autorzy | Katunin, A. Zuba, M. | |||||||||
Treść / Zawartość | ||||||||||
Warianty tytułu |
|
|||||||||
Języki publikacji | EN | |||||||||
Abstrakty |
|
|||||||||
Słowa kluczowe |
|
|||||||||
Wydawca |
Wydawnictwa Naukowe Instytutu Lotnictwa |
|||||||||
Czasopismo | Fatigue of Aircraft Structures | |||||||||
Rocznik | 2017 | |||||||||
Tom | Iss. 9 | |||||||||
Strony | 5--16 | |||||||||
Opis fizyczny | Bibliogr. 30 poz., rys., tab., wykr., wzory | |||||||||
Twórcy |
|
|||||||||
Bibliografia |
[1] West W.M., Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen, Proceedings of the Air Force Conference on Aircraft Structural Integrity, 1-6, 1984.
[2] Leiven N.A.J., Ewins D.J., Spatial correlation of mode shapes, the Coordinate Modal Assurance Criterion (COMAC), Proceedings of the Sixth International Modal Analysis Conference, 1, 690-695, 1988. [3] Shi Z.Y., Law S.S., Zhang L.M., Damage localization by directly using incomplete mode shapes, Journal of Engineering Mechanics, 126(6), 656-660, 2000. [4] Ismail Z., Abdul Razak H., Abdul Rahman A.G., Determination of damage location in RC beams using mode shape derivatives, Engineering Structures, 28(11), 1566-1573, 2006. [5] Whalen T.M., The behavior of higher order mode shape derivatives in damaged, beam-like structures, Journal of Sound and Vibration, 309(3-5), 426-464, 2008. [6] Douka E., Loutridis S., Trochidis A., Crack identification in beams using wavelet analysis, International Journal of Solids and Structures, 40(13-14), 3557-3569, 2003. [7] Rucka M., Wilde K., Application of continuous wavelet transform in vibration based damage detection method for beams and plates, Journal of Sound and Vibration, 297(3-5), 536-550, 2006. [8] Zhong S., Oyadiji S.O., Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform, Mechanical Systems and Signal Processing, 21(4), 1853-1884, 2007. [9] Katunin A., Holewik F., Crack identification in composite elements with non-linear geometry using spatial wavelet transform, Archives of Civil and Mechanical Engineering, 13(3), 287-296, 2013. [10] Katunin A., Przystałka P., Detection and localization of delaminations in composite beams using fractional B-spline wavelets with optimized parameters, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 15(3), 391-399, 2014. [11] Simard P., le Tavernier E., Fractal approach for signal processing and application to the diagnosis of cavitation, Mechanical Systems and Signal Processing, 14(3), 459-469, 2000. [12] Purintrapiban U., Kachitvichyanukul V., Detecting patterns in process data with fractal dimension, Computers & Industrial Engineering, 45(4), 653-667, 2003. [13] Gotoh K., Hayakawa M., Smirnova N.A., Hattori K., Fractal analysis of seismogenic ULF emissions, Physics and Chemistry of the Earth, 29(4-9), 419-424, 2004. [14] Solhjoo S., Nasrabadi A.M., Golpayegani M.R.H., EEG-based mental task classification in hypnotized and normal subjects, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 2041-2043, 2005. [15] Mishra A.K., Raghav S., Local fractal dimension based ECG arrhythmia classification, Biomedical Signal Processing and Control, 5(2), 114-123, 2010. [16] Hadjileontiadis L.J., Douka E., Trochidis A., Fractal dimension analysis for crack identification in beam structures, Mechanical Systems and Signal Processing, 19(3), 659-674, 2005. [17] Wang J., Qiao P., Improved damage detection for beam-type structures using a uniform load surface, Structural Health Monitoring, 6(2), 99-110, 2007. [18] Qiao P., Cao M., Waveform fractal dimension for mode shape-based damage identification of beam-type structures, International Journal of Solids and Structures, 45(22-23), 5946-5961, 2008. [19] Li H., Huang Y., Ou J., Bao Y., Fractal dimension-based damage detection method for beams with a uniform cross-section, Computer-Aided Civil and Infrastructure Engineering, 26, 190-206, 2011. [20] An Y., Ou J., Experimental and numerical studies on damage localization of simply supported beams based on curvature difference probability method of waveform fractal dimension, Journal of Intelligent Material Systems and Structures, 23(4), 415-426, 2011. [21] Bai R., Cao M., Su Z., Ostachowicz W., Xu H., Fractal dimension analysis of higher-order mode shapes for damage identification of beam structures, Mathematical Problems in Engineering, 2012, ID 454568, 2012. [22] Bai R.B., Song X.G., Radzieński M., Cao M.S., Ostachowicz W., Wang S.S., Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes, Smart Structures and Systems, 13(6), 975-991, 2014. [23] Katunin A., Fractal dimension-based crack identification technique of composite beams for on-line SHM systems, Machine Dynamics Research, 34(2), 60-69, 2010. [24] Katunin A., Serzysko K., Detection and localization of cracks in composite beams using fractal dimension-based algorithms – a comparative study, Machine Dynamics Research 38(2), 27-36, 2014. [25] Katz M., Fractals and the analysis of waveforms, Computers in Biology and Medicine, 18, 145-156, 1988. [26] Higuchi T., Approach to an irregular time series on the basis of the fractal theory, Physica D, 31, 277-283, 1988. [27] Petrosian A., Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns, Proceedings of IEEE Symposium on Computer-Based Medical Systems, 212–217, 1995. [28] Sevcik C., On fractal dimension of waveforms, Chaos Solitons and Fractals, 28, 579-580, 2006. [29] Esteller R., Vachtsevanos G., Echauz J., Litt B., A comparison of fractal dimension algorithms using synthetic and experimental data, Proceedings of the 1999 IEEE International Symposium of Circuits and Systems, 3, 199–202, 1999. [30] Raghavendra B.S., Dutt D.N., Computing fractal dimension of signals using multiresolution box-counting method, International Journal of Engineering and Mathematical Sciences, 6, 53–68, 2010. |
|||||||||
Uwagi |
|
|||||||||
Kolekcja | BazTech | |||||||||
Identyfikator YADDA | bwmeta1.element.baztech-84eb52c5-4426-48d2-abd5-dbd6977a8745 | |||||||||
Identyfikatory |
|