PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of climate change and associated impact on selected sectors in Poland

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper offers a brief assessment of climate change and associated impact in Poland, based on selected results of the Polish–Norwegian CHASE-PL project. Impacts are examined in selected sectors, such as water resources, natural hazard risk reduction, environment, agriculture and health. Results of change detection in long time series of observed climate and climate impact variables in Poland are presented. Also, projections of climate variability and change are provided for time horizons of 2021–2050 and 2071–2100 for two emission scenarios, RCP4.5 and RCP8.5 in comparison with control period, 1971–2000. Based on climate projections, examination of future impacts on sectors is also carried out. Selected uncertainty issues relevant to observations, understanding and projections are tackled as well.
Czasopismo
Rocznik
Strony
1509--1523
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • Institute for Agricultural and Forest Environment of the Polish Academy of Sciences, Poznan, Poland
  • Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
autor
  • Warsaw University of Life Sciences (SGGW), Warsaw, Poland
  • Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
autor
  • Norwegian Meteorological Institute (Met Norway), Oslo, Norway
autor
  • Warsaw University of Life Sciences (SGGW), Warsaw, Poland
autor
autor
  • Warsaw University of Life Sciences (SGGW), Warsaw, Poland
autor
  • Norwegian Meteorological Institute (Met Norway), Oslo, Norway
  • Warsaw University of Life Sciences (SGGW), Warsaw, Poland
autor
  • Institute for Agricultural and Forest Environment of the Polish Academy of Sciences, Poznan, Poland
  • Norwegian Meteorological Institute (Met Norway), Oslo, Norway
  • Norwegian Meteorological Institute (Met Norway), Oslo, Norway
autor
  • Institute for Agricultural and Forest Environment of the Polish Academy of Sciences, Poznan, Poland
autor
  • Norwegian Meteorological Institute (Met Norway), Oslo, Norway
  • Norwegian Meteorological Institute (Met Norway), Oslo, Norway
autor
  • Warsaw University of Life Sciences (SGGW), Warsaw, Poland
  • Institute for Agricultural and Forest Environment of the Polish Academy of Sciences, Poznan, Poland
  • Norwegian Meteorological Institute (Met Norway), Oslo, Norway
autor
  • Norwegian Meteorological Institute (Met Norway), Oslo, Norway
Bibliografia
  • 1. Benestad R, Parding K, Dobler A, Mezghani A (2017) A strategy to effectively make use of large volumes of climate data for climate change adaptation. Clim Serv 6:48–54. https://doi.org/10.1016/j.cliser.2017.06.013
  • 2. Berezowski T, Szcześniak M, Kardel I et al (2016) CPLFD-GDPT5: high-resolution gridded daily precipitation and temperature dataset for two largest Polish river basins. Earth Syst Sci Data. http://www.earth-syst-sci-data.net/8/127/2016/. Accessed 2 Nov 2018
  • 3. Ceglarz A, Benestad R, Kundzewicz ZW (2018) Inconvenience vs. rationality. Reflections on different faces of climate contrarianism in Poland and Norway. Weather Clim Soc (American Geophysical Union). https://doi.org/10.1175/WCAS-D-17-0120.1
  • 4. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779. https://doi.org/10.1038/nclimate1562
  • 5. Graczyk D, Pinskwar I, Kundzewicz ZW et al (2017) The heat goes on-changes in indices of hot extremes in Poland. Theor Appl Climatol 129(1–2):459–471
  • 6. Graczyk D, Kundzewicz ZW, Choryński A et al (2018) Heat related mortality during hot summers in Polish cities. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2554-x
  • 7. Hanson CE et al (2007) Modelling the impact of climate extremes: an overview of the MICE project. Clim Change 81:163–177. https://doi.org/10.1007/s10584-006-9230-3
  • 8. Hattermann FF et al (2011) Model-supported impact assessment for the water sector in Central Germany under climate change—a case study. Water Resour Manag 25(13):3113–3134. https://doi.org/10.1007/s11269-011-9848-4
  • 9. Kundzewicz ZW, Matczak P (2012) Climate change regional review: Poland. Wiley Interdiscip Rev Clim Change 3(4):297–311
  • 10. Kundzewicz ZW, Kozyra J (2017) Climate change impact on Polish agriculture. In: Kundzewicz ZW, Hov Ø, Okruszko T (eds) Climate change and its impact on selected sectors in Poland. Ridero IT Publishing, Poznań, pp 158–171. ISBN 978-83-8104-735-7
  • 11. Kundzewicz ZW et al (2014) Floods at the northern foothills of the Tatra Mountains: a Polish–Swiss research project. Acta Geophys 62(3):620–641
  • 12. Kundzewicz ZW, Hov Ø, Okruszko T (eds) (2017a) Climate change and its impact on selected sectors in Poland. Ridero IT Publishing, Poznań
  • 13. Kundzewicz ZW, Hov Ø, Okruszko T (eds) (2017b) Zmiany klimatu i ich skutki w wybranych sektorach w Polsce. Poznań
  • 14. Kundzewicz ZW, Benestad RE, Ceglarz A (2017c) Perception of climate change and mitigation policy in Poland and Norway. In: Kundzewicz ZW, Hov Ø, Okruszko T (eds) Climate change and its impact on selected sectors in Poland. Ridero IT Publishing, Poznań, pp 216–244. ISBN 978-83-8104-735-7
  • 15. Kundzewicz ZW, Førland EJ, Piniewski M (2017d) Challenges for developing national climate services: Poland and Norway. Clim Serv 8:17–25
  • 16. Kundzewicz ZW, Krysanova V, Dankers R et al (2017e) Differences in flood hazard projections in Europe: their causes and consequences for decision making. Hydrol Sci J 62(1):1–14
  • 17. Kundzewicz ZW, Painter J, Kundzewicz WJ (2017f) Climate change in the media: Poland’s exceptionalism. Environ Commun. https://doi.org/10.1080/17524032.2017.1394890
  • 18. Kundzewicz ZW, Pińskwar I, Brakenridge GR (2017g) Changes in river flood hazard in Europe: a review. Hydrol Res. https://doi.org/10.2166/nh.2017.016
  • 19. Kundzewicz ZW et al (2017h) Changes of flood risk on the northern foothills of the Tatra Mountains. Acta Geophys 65(4):799–807
  • 20. Kundzewicz ZW, Krysanova V, Benestad RE et al (2018) Uncertainty in climate change impacts on water resources. Environ Sci Policy 79:1–8
  • 21. Łupikasza E (2010) Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int J Climatol 30:991–1007. https://doi.org/10.1002/joc.1950
  • 22. Łupikasza E (2017) Seasonal patterns and consistency of extreme precipitation trends in Europe, December 1950 to February 2008. Clim Res 72:217–237
  • 23. Marcinkowski P, Piniewski M (2018) Climate change effect on sowing and harvest dates of spring barley and maize in Poland. Int Agrophys 32:265–271
  • 24. Marcinkowski P, Piniewski M, Kardel I et al (2016) Challenges in modelling of water quantity and quality in two contrasting meso-scale catchments in Poland. J Water Land Dev 31(X–XII):97–111. https://www.degruyter.com/view/j/jwld.2016.31.issue-1/jwld-2016-0040/jwld-2016-0040.xml. Accessed 2 Nov 2018
  • 25. Marcinkowski P, Piniewski M, Kardel I et al (2017) Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland. Water 9(3):156. http://www.mdpi.com/2073-4441/9/3/156. Accessed 2 Nov 2018
  • 26. Mezghani A, Dobler A, Haugen JE (2016) CHASE-PL climate projections: 5-km gridded daily precipitation and temperature dataset (CPLCP-GDPT5). Norwegian Meteorological Institute, Oslo. https://doi.org/10.4121/uuid:e940ec1a-71a0-449e-bbe3-29217f2ba31d(Dataset)
  • 27. Mezghani A, Dobler A, Haugen JE et al (2017) CHASE-PL climate projection dataset over Poland: bias adjustment of EURO-CORDEX simulations. Earth Syst Sci Data 9(2):905–925
  • 28. Mezghani A, Dobler A, Benestad R (2018) Subsample effect on the climate change signal based on simulations from statistical and dynamical downscaling. J Clim (submitted)
  • 29. Milly PCD et al (2008) Stationarity is dead: whither water management? Science 319:573–574
  • 30. Milly PCD et al (2015) On critiques of “stationarity is dead: whither water management?”. Water Resour Res 51(9):7785–7789. https://doi.org/10.1002/2015WR017408
  • 31. O’Keeffe J, Piniewski M, Szcześniak M, Oglęcki P, Parasiewicz P, Okruszko T (2018) Index-based analysis of climate change impact on streamflow conditions important for northern pike, chub and Atlantic salmon. Fish Manag Ecol. https://doi.org/10.1111/fme.12316
  • 32. Piniewski M (2017) Classification of natural flow regimes in Poland. River Res Appl 33(7):1205–1218
  • 33. Piniewski M, Meresa HK, Romanowicz R et al (2017a) What can we learn from the projections of changes of flow patterns? results from Polish case studies. Acta Geophys 65(4):809–827
  • 34. Piniewski M, Mezghani A, Szcześniak M et al (2017b) Regional projections of temperature and precipitation changes: robustness and uncertainty aspects. Meteorol Z 26(2):223–234
  • 35. Piniewski M, Szcześniak M, Huang S, Kundzewicz ZW (2017c) Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model. Hydrol Res. https://doi.org/10.2166/nh.2017.280
  • 36. Piniewski M, Szcześniak M, Kardel I et al (2017d) Hydrological modelling of the Vistula and Odra river basins using SWAT. Hydrol Sci J 62(8):1266–1289
  • 37. Piniewski M, Szcześniak M, Kundzewicz ZW et al (2017e) Changes in low and high flows in the Vistula and the Odra basins: model projections in the European-scale context. Hydrol Process 31(12):2210–2225
  • 38. Piniewski M, Szcześniak M, Kardel I (2017f) CHASE-PL: future hydrology data set: projections of water balance and streamflow for the Vistula and Odra basins, Poland. Data http://www.mdpi.com/2306-5729/2/2/14. Accessed 2 Nov 2018
  • 39. Piniewski M, Marcinkowski P, Kundzewicz ZW (2018a) Trend detection in river flow indices in Poland. Acta Geophys https://link.springer.com/article/10.1007%2Fs11600-018-0116-3. Accessed 2 Nov 2018
  • 40. Piniewski M, Marcinkowski P, O’Keeffe J et al (2018b) Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland. Agric For Meteorol (submitted)
  • 41. Pińskwar I, Dobler A (2018) Observed and projected changes in heavy precipitation in Poland. Met Hydrol Water Manag (submitted)
  • 42. Pińskwar I, Choryński A, Graczyk D, Kundzewicz ZW (2018a) Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2372-1
  • 43. Pińskwar I, Choryński A, Graczyk D, Kundzewicz ZW (2018b) Observed changes in precipitation in Poland. Geografie (submitted)
  • 44. Szwed M (2018) Variability of precipitation in Poland under climate change. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2408-6
  • 45. Szwed M, Karg G, Pińskwar I, Radziejewski M, Graczyk D, Kędziora A, Kundzewicz ZW (2010) Climate change and its effect on agriculture, water resources and human health sectors in Poland. Nat Hazards Earth Syst Sci 10:1725–1737. https://doi.org/10.5194/nhess-10-1725-2010
  • 46. Szwed M, Pińskwar I, Kundzewicz ZW et al (2017) Changes of snow cover in Poland. Acta Geophys 65(1):65–76
  • 47. Szwed M, Dobler A, Mezghani A, Saloranta TM (2018) Change of maximum snow cover depth in Poland. Idojaras (submitted)
  • 48. Wyżga B, Kundzewicz ZW, Konieczny R et al (2018) Comprehensive approach to the reduction of river flood risk: case study of the Upper Vistula Basin. Science Total Environ 631–632:1251–1267. https://doi.org/10.1016/j.scitotenv.2018.03.015
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81d3a6d5-f76f-4524-9d1a-54c920257286
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.