Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fading Channel Prediction for 5G and 6G Mobile Communication Systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
Nowadays, there is a trend to employ adaptive solutions in mobile communication. The adaptive transmission systems seem to answer the need for highly reliable communication that serves high data rates. For efficient adaptive transmission, the future Channel State Information (CSI) has to be known. The various prediction methods can be applied to estimate the future CSI. However, each method has its bottlenecks. The task is even more challenging while considering the future 5G/6G communication where the employment of sub-6 GHz and millimetre waves (mmWaves) in narrow-band, wide-band and ultra-wide-band transmission is considered. Thus, author describes the differences between sub-6 GHz/mmWave and narrow-band/wide-band/ultra-wide-band channel prediction, provide a comprehensive overview of available prediction methods, discuss its performance and analyse the opportunity to use them in sub-6 GHz and mmWave systems. We select Long Short-Term Memory Recurrent Neural Network (RNN) as the most promising technique for future CSI prediction and propose optimising two of its parameters - the number of input features, which was not yet considered as an opportunity to improve the performance of CSI prediction, and the number of hidden layers.
  • Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
  • [1] B. Porter, R. R. Filho, and P. Dean, “A survey of methodology in self-adaptive systems research,” 2020. [Online]. Available:
  • [2] F.-L. Luo, Ed., Machine Learning for Future Wireless Communications, Wiley, 2020, ch. 16.3, ISBN: 978-1-78561-657-0.
  • [3] A. Duel-Hallen, “Fading channel prediction for mobile radio adaptive transmission systems,” IEEE, 2007. [On-line]. Available:
  • [4] W. Jiang and H. D. Schotten, “Neural network-based fading channel prediction: A comprehensive overview,” [Online]. Available:
  • [5] A. S. Konstantinov and A. V. Pestryakov, “Fading channel prediction for 5g,” Russia. [Online]. Available:
  • [6] A. F. Molish, Wireless Communications, S.E. 2011, ISBN: 978-0-470-74186-3.
  • [7] A. Duel-Hallen, S. Hu, and H. Hallen, “Long-range prediction of fading signals: Enabling adapting transmission for mobile radio channels,” SPM, vol. 17, 2000. [Online]. Available:
  • [8] T. S. Rappaport, R. W. Health Jr., R. C. Daniels, and J. N. Murdock, Milimeter Wave Wireless Comm. 2015, ISBN: 978-0-13-409709-1.
  • [9] mmMagic 5G-PPP, “mmMagic deliverable d2.1,” 2016.
  • [10] A. F. Molisch, “Ultra-wide-band propagation channels,” [Online]. Available:
  • [11] S. Hu, T. Eyceoz, A. Duel-Hallen, and H. Hallen, “Transmitter antenna diversity and adaptive signaling using long range prediction for fast fading DS/CDMA mobile radio channels,” WCNC, vol. 2, p. 824, 1999. [Online]. Available:
  • [12] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall PTR, 1993, ISBN: 978-0-13-345711-7.
  • [13] F. Diehm and G. Fettweis, “Cooperative interference prediction for enhanced uplink link adaptation under backhaul delays,” in 2012 PIMRC, pp. 173–177. [On-line]. Available:
  • [14] J. Proakis and M. Salehi, Digital Communications. ’08, ISBN: 1-283-38746-8.
  • [15] S. M. Kay, Modern Spectral Estimation: Theory & Application. Prentice Hall PTR, 1987, ISBN: 978-0-13-015159-9.
  • [16] L. S. Marple Jr, Digital Spectral Analysis. 2019, ISBN: 978-0-13-214149-9.
  • [17] M. Kallas, P. Honeine, C. Richard, C. Francis, and H. Amoud, “Prediction of time series using yule-walker equations with kernels,” ICASSP, no. 1, p. 2185, 2012. [Online]. Available:
  • [18] S. Stoica and R. Moses, Introduction to Spectral Analysis. Prentice Hall, 1997, ISBN: 978-0-13-258419-7.
  • [19] R. Bucy, Lectures on Discrete Time Filtering. 1994, ISBN: 978-1-4613-8392-5.
  • [20] V. Koen, “A fast implementation of burg’s method,” ’13.
  • [21] G. Box, G. Jenkins, G. Reinsel, and G. Ljung, Time Series Analysis, Forecasting and Control. 5th ed, ’16, ISBN: 978-0-13-060774-4.
  • [22] Y. Zheng, S. Ren, X. Xu, Y. Si, M. Dong, and J. Wu, “A modified ARIMA model for CQI prediction in LTE-based mobile satellite communications,” in 2012 ICIST. [Online]. Available:
  • [23] D. Lee, D. Lee, M. Choi, and J. Lee, “Prediction of network throughput using ARIMA,” in ICAIIC 2020. [On-line]. Available:
  • [24] T. Ekman, “Prediction of mobile radio channels: Modeling and design,” PhD diss., Uppsala University, 2002.
  • [25] S. Semmelrodt and R. Kattenbach, “Investigation of different fading forecast schemes for flat fading radio channels,” VTC, vol. 58, no. 1, pp. 149–153, 2003. [Online]. Available:
  • [26] M. H. Hayes, Statistical Digital Signal Processing and Modeling. John Wiley & Sons, Inc., 1996, ISBN: 978-0-471-59431-4.
  • [27] I. C. Wong and B. L. Evans, “Joint channel estimation and prediction for OFDM systems.” [Online]. Available:
  • [28] I. C. Wong and B. L. Evans, “WLC43-5: Low-complexity adaptive high-resolution channel prediction for OFDM systems,” presented at the Globecom ’06. [Online]. Available:
  • [29] P. Teal and R. Vaughan, “Simulation and performance bounds for real-time prediction of the mobile multipath channel,” in SSP 2001. [Online]. Available:
  • [30] R. Vaughan, P. Teal, and R. Raich, “Short-term mobile channel prediction using discrete scatterer propagation model and subspace signal processing algorithms,” ’00. [Online]. Available:
  • [31] M. Chen, T. Ekman, and M. Viberg, “New approaches for channel prediction based on sinusoidal modeling,” [Online]. Available:
  • [32] M. Haardt and J. Nossek, “Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden,” vol. 43, no. 5, p. 1232, 1995. [Online]. Available:
  • [33] Y. Takano, T. Nishimura, T. Ohgane, Y. Ogawa, and J. Hagiwara, “Channel prediction of wideband OFDM systems in a millimeter-wave band based on multipath delay estimation,” IEICE ComEX, 2020, vol. 9, no. 12, [Online]. Available:
  • [34] M. F. Rabbi, Shengwei Hou, and C. C. Ko, “Basis expansion model (BEM) based channel estimation for OFDMA uplink transmission,” in 2008 ICCS, p. 1101. [Online]. Available:
  • [35] T. Zemen, C. Mecklenbrauker, and B. Fleury, “Time-variant channel prediction using time-concentrated and band-limited sequences,” in 2006 ICC. [Online]. Available:
  • [36] R. J. Lyman, “Linear prediction of continuous-time bandlimited processes with applications to fading in mobile radio,” Univ. of Floryda, 2000.
  • [37] R. Lyman and A. Sikora, “Prediction of fading envelopes with diffuse spectra,” in ICASSP ’05. [Online]. Available:
  • [38] M. Williams, G. Dickins, R. Kennedy, T. Pollock, and T. Abhayapala, “Novel scheme for spatial extrapolation of multipath,” in APCC ’05, pp. 784–787. [Online]. Available:
  • [39] Ruisi He and Zhiguo Ding, Applications of Machine Learning in Wireless Communications. 2019, ISBN: 978-1-78561-657-0.
  • [40] L. Bai, C.-X. Wang, J. Huang, et al., “Predicting wireless MmWave massive MIMO channel characteristics using machine learning algorithms,” WCMC, vol. 2018, [Online]. Available:
  • [41] J. Connor, R. Martin, and L. Atlas, “Recurrent neural networks and robust time series prediction,” 1994. [On-line]. Available:
  • [42] R.-F. Liao, H. Wen, J. Wu, H. Song, F. Pan, and L. Dong, “The Rayleigh fading channel prediction via deep learning,” WCMC, vol. 2018, pp. 1–11, [Online]. Available:
  • [43] K. Baddour and N. Beaulieu, “Autoregressive modeling for fading channel simulation,” TWC 2005, [Online]. Available:
  • [44] D. S. Kapoor and A. K. Kohli, “Channel estimation and long-range prediction of fast fading channels for adaptive OFDM system,” IJE, vol. 105, no. 9, 2018. [Online]. Available:
  • [45] Ki-Young Han, Sang-Wook Lee, Jun-Seok Lim, and Koeng-Mo Sung, “Channel estimation for OFDM with fast fading channels by modified Kalman filter,” 2004. [Online]. Available:
  • [46] A. Duel-Hallen, H. Hallen, and T. S. Yang, “Long range prediction and reduced feedback for mobile radio adaptive OFDM systems,” TWC, vol. 5, no. 10, 2006. [Online]. Available:
  • [47] Wei L., Lie-Liang Y., and L. Hanzo, “Recurrent neural network based narrowband channel prediction,” 2006. [Online]. Available:
  • [48] S. Haykin, Kalman Filtering and Neural Networks. ’01, ISBN: 780471369981.
  • [49] J. Joo, M. C. Park, D. S. Han, and V. Pejovic, “Deep learning-based channel prediction in realistic vehicular communications,” IEEE Access, vol. 7, 2019. [Online]. Available:
  • [50] G. Liu, Y. Xu, Z. He, Y. Rao, J. Xia, and L. Fan, “Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles,” 2019. [Online]. Available:
  • [51] J. Kang, N. Garcia, H. Wymeersch, C. Fischione, G. Seco-Granados, and S. Kim, “Optimizing the mmWave channel estimation duration by rate prediction,” 2020. [Online]. Available:
  • [52] W. Khawaja, O. Ozdemir, and I. Guvenc, “Channel prediction for mmWave ground-to-air propagation under blockage,” arXiv:2010.01614 [eess], May 5, 2021. [Online]. Available:
  • [53] S. H. A. Shah, M. Sharma, and S. Rangan, “LSTM-based multi-link prediction for mmWave and sub-THz wireless systems,” Dublin, Ireland, pp. 1–6. [Online]. Available:
  • [54] Y. Guo, Z. Wang, M. Li, and Q. Liu, “Machine learning based mmWave channel tracking in vehicular scenario.” [Online]. Available:
  • [55] J. Yang, L. Li, and M.-J. Zhao, “A blind CSI prediction method based on deep learning for v2i millimeter-wave channel,” presented at the 2020 ICNP. [Online]. Available:
  • [56] J. Camp and E. Knightly, “Modulation rate adaptation in urban and vehicular environments: Cross-layer implementation and experimental evaluation,” ACM, 2010, [Online]. Available:
  • [57] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, “Channel state information prediction for 5g wireless communications: A deep learning approach,” TNSE, 2020, [Online]. Available:
  • [58] Dong L., Xu G., and Ling H., “Prediction of fast fading mobile radio channels in wideband communication systems,” presented at the GLOBECOM ’01. [Online]. Available:
  • [59] A. M. Al-Sammna, M. Hadri Azmi, and T. Abd Rahman, “Time-varying ultra-wideband channel modeling and prediction,” Symmetry, vol. 10, no. 11, 2018. [On-line]. Available:
  • [60] J. Schmidhuber and F. Cummins, “Learning to forget: Continual prediction with LSTM,” in ICAAN ’99. [On-line]. Available:
  • [61] Mostofi-Lab Wireless Channel Measurements (2009),
  • [62] A. G. A. Gonzalez-Ruiz and Y. Mostofi, “A Comprehensive Overview and Characterization of Wireless Channelsfor Networked Robotic and Control Systems,” Journal of Robotics, vol. 5, p. 19, 2011. [Online]. Available:
  • [63] NextG channel model alliance database, dataset: Beelde Ghent University Ghent Vessel,
  • [64] B. De Beelde, E. Tanghe, M. Yusuf, D. Plets, E. De Poorter, and W. Joseph, “60 GHz path loss modelling inside ships,” presented at the 2020 EuCAP. [Online]. Available:
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.