Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A nanoscale simulation study of elastic properties of gaspeite

Treść / Zawartość
Warianty tytułu
Języki publikacji
The study of structural and mechanical properties of carbonate rock is an interesting subject in engineering and its different applications. In this paper, the crystal structure of gaspeite (NiCO3) is investigated by carrying out molecular dynamics simulations based on energy minimization technique using an interatomic interaction potential. At first, we focus on the structural properties of gaspeite mineral. And then, the elastic properties are calculated, including the elastic constants, bulk modulus, shear modulus, the S- and P-wave velocities. In the next part of this paper, the pressure effect will be studied on the structural and elastic properties of NiCO3 at high pressure.
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
  • Laboratoire des Fluides Complexes et leurs Réservoirs- LFC-R, UMR-5150, Université de Pau et des Pays de l’Adour, BP 1155, 64013 PAU Cedex, France,
  • [1] ARAUJO R.M., ERNESTO M., GIROLDO V., Computer simulation of static defects generated by the metals substitutional CaCO3, thesis, Department of Physics at the Federal University of Sergipe, Brasil, 2004.
  • [2] ARCHER T.D., BIRSE S.E.A., DOVE M.T. et al., An interatomic potential model for carbonates allowing for polarization effects, Phys. Chem. Minerals, 2003, 30, 416–424.
  • [3] AUSTEN K.F., WRIGHT K., SLATER B., GALE J.D., The interaction of dolomite surfaces with metal impurities: A Computer Simulation Study, Phys. Chem. Chem. Phys., 2005, 7, 4150–4156.
  • [4] BENAZZOUZ B.-K., Etude théorique des propriétés structurales et mécaniques de la roche rhodochrosite, 31ème Rencontres Universitaires de Génie Civil, Cachan, 2013.
  • [5] BORN M., HUANG K., Dynamical theory of crystal lattices, Oxford University Press, Oxford, 1954.
  • [6] CATLOW C.R.A., MACKRODT W.C., Computer Simulation of Solids, 320, p. Berlin, Springer-Verlag, 1982.
  • [7] CATTI M., PAVESE A., PRICE G.D., Thermodynamic properties of CaCO3 calcite and aragonite: a quasi-harmonic calculation, Phys. Chem. Miner., 1993, 19, 472–479.
  • [8] CYGAN R.T., WRIGHT K., FISLER D.K., GALE J.D., SLATER B., Atomistic models of carbonate minerals: bulk and surface structures, defects, and diffusion, Molecular Simulation, 2002, Vol. 28 (6–7), 475–495.
  • [9] DICK B.G., OVERHAUSER A.W., Theory of the dielectric constants of alkalihalide crystals, Physical Review, 1958, 112, 90–103.
  • [10] DOVE M.T., WINKLER B., LESLIE M., HARRIS M.J., SALJE E.K.H., A new interatomic potential model for calcite: applications to lattice dynamics studies, phase transition, and isotopic fractionation, Am. Mineral., 1992, 77, 244–250.
  • [11] FISLER D.K., GALE J.D., CYGAN R.T. et al., A shell model for the simulation of rhombohedral carbonate minerals and their point defects, Am. Mineral., 2000, 85, 217–224.
  • [12] GALE J.D., Empirical potential derivation for ionic materials, Phil. Mag. B, 1996, 73, 3.
  • [13] GALE J.D., GULP: A computer program for the symmetry- adapted simulation of solids, J. Chem. Soc. Faraday Trans., 1997, 93, 629–637.
  • [14] GALE J.D., ROHL A.L., The general utility lattice program (gulp), Molecular Simulation, 2003, Vol. 29 (5), 291–341.
  • [15] JACKSON R.A., PRICE G.D., A transferable interatomic potential for calcium carbonate, Molecular Simulation, 1992, 9, 75–177.
  • [16] JACKSON R.A., MEENAN P.A., PRICE G.D. et al., Deriving empirical potentials for molecular ionic materials, Mineral. Mag., 1995, 59, 617–622.
  • [17] LEEUW N.H., PARKER S.C., Modeling absorption and segregation of magnesium and cadmium ions to calcite surfaces: Introducing MgCO3 and CdCO3 potential models, Journal of Chemical Physics, 2000, Vol. 112, No. 9.
  • [18] NYE J.F., Physical properties of crystals, Oxford University Press, 1985.
  • [19] PARKER S.C., TITILOYE J.O., WATSON G.W., Phil. Trans. R Soc. London, Ser. A Phys. Sci. Eng. 1993, 344, 37.
  • [20] PAVESE A., CATTI M., PRICE G.D. et al., Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data, Phys. Chem. Minerals, 1992, 19, 80–87.
  • [21] PAVESE A., CATTI M., PARKER S.C., WALL A., Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3, Phys. Chem. Minerals, 1996, 23, 89–93.
  • [22] PERTLIK, , Structures of hydrothermally synthesized cobalt (II) carbonate and nickel(II) carbonate, Acta Cryst., 1986, C42, 4–5.
  • [23] ROHL A.L, WRIGHT K., GALE J.D., Evidence from surface phonons for the (2 x 1) reconstruction of the (10–14) surface of calcite from computer simulation, American Mineralogist, 2003, Vol. 88, 921–925.
  • [24] SEKKAL W., TALEB N., ZAOUI A., SHAHROUR I., A lattice dynamical study of the aragonite and post-aragonite phases of calcium carbonate rock, American Mineralogist, 2008, Vol. 93, 1608–1612.
  • [25] VINOGRAD V.L, WINKLER B., PUTNIS A., GALE J.D., SLUITER M.H.F., Static lattice energy calculations of mixing and ordering enthalpy in binary carbonate solid solutions, Chemical Geology, 2006, 225, 304–313.
  • [26] WANG Q., GRAU-CRESPO R., DE LEEUW N.H., Mixing Thermodynamics of the Calcite-Structured (Mn, Ca)CO3 Solid Solution: A Computer Simulation Study, J. Phys. Chem. B, 2011, 115, 3854–13861.
  • [27] ZAOUI A., SHAHROUR I., Molecular dynamics study of high- pressure polymorphs of BaCO3, Philosophical Magazine Letters, 2010, Vol. 90, No. 9, 689–697.
  • [28]ZHANG J., REEDER R.J., Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations, American Mineralogist, 1999, 84, 861–870.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.