Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrodynamic body shape analysis and their impact on swimming performance

Treść / Zawartość
Warianty tytułu
Języki publikacji
This study presents the hydrodynamic characteristics of different adult male swimmer's body shape using computational fluid dynamics method. This simulation strategy is carried out by CFD fluent code with solving the 3D incompressible Navier–Stokes equations using the RNG k-ε turbulence closure. The water free surface is captured by the volume of fluid (VOF) method. A set of full body models, which is based on the anthropometrical characteristics of the most common male swimmers, is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. The analysis of CFD results revealed that swimmer’s body shape has a noticeable effect on the hydrodynamics performances. This explains why male swimmer with an inverted triangle body shape has good hydrodynamic characteristics for competitive swimming.
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
  • Department of Applied Mechanics and Engineering, Sun Yat-Sen University, Guangzhou, China
  • Department of Applied Mechanics and Engineering, Sun Yat-Sen University, Guangzhou, China,
  • [1] ANSYS INC., ANSYS Fluent 12.0 theory guide, 2009.
  • [2] BIXLER B., PEASE D., FAIRHURST F., The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer, Sport Biomech., 2007, Vol. 6, 81–98.
  • [3] BIXLER B., SCHLODER M., Computational fluid dynamics: An analytical tool for the 21st century swimming scientist, J. Swim. Res., 1996, Vol. 11, 4–22.
  • [4] BLOCKEN B., DEFRAEYE T., KONINCKX E., CARMELIET C., HESPEL P., CFD simulations of the aerodynamic drag of two drafting cyclists, Comput. Fluids, 2013, Vol. 71, 435–445.
  • [5] CLARYS J.P., Human morphology and hydrodynamics, J. Terauds & E.W. Bedingfield, 1979.
  • [6] COHEN R.C.Z., CLEARY P.W., MASON B., Improving Understanding of Human Swimming Using Smoothed Particle Hydrodynamics, Proceedings of 2010 Singapore IFMBE, 6th World Congress of Biomechanics (WCB 2010), 2010, Vol. 31, 174–177.
  • [7] GELADAS N.D., NASSIS G.P., PAVLICEVIC S., Somatic and physical traits affecting sprint swimming performance in young swimmers, Int. J. Sports Med., 2005, Vol. 26, 139–144.
  • [8] JÜRIMÄE J., HALJASTE K., CICCHELLA A., LÄTT E., PURGE P., LEPPIK A., JÜRIMÄE T., Analysis of swimming performance from physical, physiological and biomechanical parameters in young swimmers, Pediatr. Exerc. Sci., 2007, Vol. 19, 70–81.
  • [9] KUCIA-CZYSZCZOŃ K., DYBIŃSKA E., AMBROŻY T., CHWAŁA W., Factors determining swimming efficiency observed in less skilled swimmers, Acta Bioeng. Biomech., 2013, Vol. 15, 115–124.
  • [10] LYTTLE A.D., BLANKSBY B.A., ELLIOTT B.C., LLOYD D.G., Optimal depth for streamlined gliding, Keskinen K.L., Komi P.V., Hollander A.P., 1999.
  • [11] LYTTLE A.D., Hydrodynamics of the Human Body During the Freestyle Tumble Turn, PhD Thesis, The University of Western Australia, Nedlands, Australia, 1999.
  • [12] MICHELL J.H., The wave-resistance of a ship, The Philosophical Magazine, 1898, Vol. 45, 106–123.
  • [13] POLIDORI G., TAIAR R., FOHANNO S., MAI TH., LODINI A., Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming, J. Biomech., 2006, Vol. 39, 2535–2541.
  • [14] POPA C.V., ARFAOUI A., FOHANNO S., TAÏAR R., POLIDORI G., Influence of a postural change of the swimmer’s head in hydrodynamic performances using 3D CFD, Comput. Method. Biomech., 2012, Vol. 17, 344–351.
  • [15] ROUBOA A., SILVA A., LEAL L., ROCHA J., ALVES F., The effect of swimmer’s hand/forearm acceleration on propulsive forces generation using computational fluid dynamics, J. Biomech., 2006, Vol. 39, 1239–1248.
  • [16] TUCK E.O., The wave resistance formula of J.H. Michell (1898) and its significance to recent research in ship hydrodynamics, J. Aust. Math. Soc. B., 1989, Vol. 30, 365–377.
  • [17] TUURI G., LOFTIN M., OESCHER J., Association of swim distance and age with body composition in adult female swimmers, Med. Sci. Sports. Exer., 2002, Vol. 34, 2110–2114.
  • [18] VAN MANEN J.D., VAN OOSSANEN P., Resistance, Lewis E., 1988.
  • [19] VENNEL R., PEASE D., WILSON D., Wave drag in human swimmers, J. Biomech., 2006, Vol. 39, 664–671.
  • [20] VOGEL S., Life in moving fluids. The Physical Biology of Flow, Princeton University Press, Princeton, 1994.
  • [21] WELLS G., SCHNEIDERMAN-WAKER J., PLYLEY M., Normal physiological characteristics of elite swiixirners, Pediatr. Exer. Sci., 2006, Vol. 18, 23–30.
  • [22] ZHAN J.M., LI T.Z., CHEN X.B., LI Y.S., ONYX WAI W.H., 3D numerical simulation analysis of passive drag near free surface in swimming, China Ocean Eng., 2014, Vol. 29(2), DOI: 10.1007/s13344-014-0080-x
  • [23] ZUNIGA J., HOUSH T.J., MIELKE M., HENDRIX C.R., CAMIC C.L., JOHINSON G.O., HOUSH D.J., SCHMIDT R.J., Gender comparisons of anthropometric characteristics of young sprint swimmers, J. Strength Cond. Res., 2011, Vol. 25, 103–108.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.