Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-7ed0897a-f744-402c-850a-7354afb3882e

Czasopismo

Ochrona przed Korozją

Tytuł artykułu

Monitoring of atmospheric corrosion. Examples and their application

Autorzy Kobus, J.  Kwiatkowski, L. 
Treść / Zawartość
Warianty tytułu
PL Możliwości wykorzystania wyników monitorowania korozyjności atmosfery
Języki publikacji EN
Abstrakty
EN Concepts of an assessment of corrosion losses in natural environment is briefly overviewed. Selected examples obtained by means of corrosion monitoring are presented. Their applications for prediction and imaging of the corrosion rate of materials in some areas of the country are described. The results obtained by corrosion monitoring can be used as a tool for a choice of materials and protection methods, as well as can help to improve a durability of infrastructure, and cost optimization.
PL Przedstawiono krótki przegląd koncepcji metod oceny skutków korozji atmosferycznej. Opisano przykłady zastosowania wyników oceny szybkości korozji materiałów do prognozowania i obrazowania korozyjności atmosfery na wybranych obszarach kraju. Wykorzystanie ich do doboru metod ochrony przed korozją infrastruktury może przyczynić się do polepszenia trwałości konstrukcji oraz optymalizacji kosztów.
Słowa kluczowe
PL korozja atmosferyczna   stal   cynk   monitoring korozyjny  
EN atmospheric corrosion   steel   zinc   corrosion monitoring  
Wydawca Wydawnictwo SIGMA-NOT
Czasopismo Ochrona przed Korozją
Rocznik 2013
Tom nr 3
Strony 80--85
Opis fizyczny Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor Kobus, J.
autor Kwiatkowski, L.
Bibliografia
1. K. Juda-Rezle, Oddziaływanie zanieczyszczeń powietrza na środowisko, Warszawa, (2000)
2. EPA-600-8-82-029b-Air quality criteria for particulate matter and sulphur oxides, 2, (1982)
3. F. Mansfeld, J.V. Kenkel, Electrochemical monitoring of atmospheric corrosion phenomena, Corrosion Sci., 16, (1976),111
4. F. Mansfeld, Evaluation of electrochemical techniques for monitoring atmospheric corrosion phenomena, Electrochemical Corrosion Testing, ASTM, (1991)
5. F.D. Wall, M.A. Martinez, N.A. Missert, R.G. Copeland, A.C. Kilgo, Characterizing corrosion behavior under atmospheric conditions using electrochemical techniques, Corrosion Science, 1, (2005), 17-32
6. T. Aastrup, C. Leygraf: ”Simultaneous infrared refl ection absorption spectroscopy and quartz crystal microbalance measurements for in situ studies of the metal/atmosphere interface”, J. Electrochem. Soc., 9, (1997), 2986-2994
7. J. W. Spence, F. H. Haynie, Atmospheric Corrosion Model for Galvanized Steel Structures, Corrosion, 48, 12 (1992) 1009-1019
8. S. Feliu, M. Morcillo, ”The Prediction of Atmospheric Corroosion from Meteorological and Pollution Parameters-II Long Term Forecast”, Corrosion Science, 34, 3 (1993) 415-422
9. S.B. Lyon, C.W. Wong, P. Ajiboye, ”An Approach to the modeling of Atmospheric Corrosion, in Atmospheric Corrosion, ASTM STP 1239, Kirk W.W, Lawson H.H., eds. American Society for Testing and Materials, Philadelphia, 1995, 26-37
10. CYTED Program, Subprogram XV.I, Project XV.I, Morcillo M. ”Atmospheric Corrosion in Iberoamerica-MICAT Project”, ASTM STP 1239, Kirk W.W., Lawson, H.H., eds. American Society for Testing and Materials, Philadelphia, (1995), 257-275
11. A.A. Mikhailov, P.V. Strekalov, Yu. M. Panchenko, Atmospheric corrosion in Tropical and Subtropical Climate Zones, Protection of metals, 43,7, (2007), 619-627
12. T.E. Graedel, ”GILDES model studies of aqueous chemistry: I- Formulation and potential applications of the multi-regime model”, Corrosion Science, 38, 12( 1998), 2153-2180
13. L.A. Farrow, T.E. Graedel, C. Leygraf, ”GILDESmodel studies of aqueous chemistry: II – The corrosion of zinc in gaseous exposure chambers”, Corrosion Science, 38, 12 ( 1996) 2181-2199
14. J. Tidblad, T.E. Graedel, ”GILDES model studies of aqueous chemistry: Initial SO2 –induced atmospheric corrosion of copper”, Corrosion Science, 38, 12 (1996) 2201-2224
15. J. Tidblad, T. Aastrup, C. Leygraf, GILDES Model Studies of Aqueous Chemistry VI. Initial SO2 /O3 – and SO2/NO2 – Induced Atmospheric Corrosion of Copper, Corrosion Science, 39, (1997) 2657-2663
16. J. Tidblad, T. E. Graedel, GILDES Model Studies of Aqueous Chemistry V. Initial SO2 Induced Atmospheric Corrosion of Nickel, J.Electrochem Soc.144, (1997) 2986
17. H. Gil, C. Leygraf, J. Tidblad, GILDES Model Simulations of the Atmospheric Corrosion of Zinc Induced by Low Concentrations of Carboxylic Acids, J. Electrochem. Soc. 159, 3, (2001), C123-C128
18. I.S. Cole, D.A. Paterson, W. D. Ganther, “An holistic model for atmospheric corrosion: Part 1 – Theorical framework for the production, transportation and deposition of marine salts”, Corrosion Engineering, Science and Technology, 38, 2,(2003), 129-134
19. I.S. Cole, W.D. Ganther, J.O. Sinclair, D. Lau, D.A. Paterson, ”A study of the wetting of metal surfaces in order to understand the processes controlling atmospheric corrosion”, Journal of the Electrochemical Society, 151, 12, (2004), B627, B635
20. I.S. Cole, W.D. Ganther, D.A. Peterson, A. Bradbury, Corrosion Engineering, Science and Technology, 40, 4, (2005) 328-336
21. I.S Cole, S.A. Peterson, Corrosion Engineering, Science and Technology, 41, 1, 920-06), 67-76
22. J. Cai, R. A. Cottis, S. B. Lyon, ”Phenomenological modelling of atmospheric corrosion using an artifi cial neural network”, Corrosion Science, 41, (1999), 2001-2030
23. S. Pintos, N.V. Queipo, Artifi cial neural network for the MICAT project, Corrosion Science, 42, 1, (2000), 35-52
24. G. Kumar and R.G. Buchheit,Use of Artifi cial Neural Network Models to Predict Coated Component Life from Short-Term Electrochemical Impedance Spectroscopy Measurements CORROSION, 64, 3, (2008), 241-254
25. ISO 9223:2012- Corrosion of metals and alloys – Corrosivity of atmospheres – Classifi - cation, determination and estimation
26. ISO 9224:2012 – Corrosion of metals and alloys – Corrosivity of atmospheres – Guiding values for the corrosivity categories
27. ISO 9224:2012 – Corrosion of metals and alloys – Corrosivity of atmospheres – Measurement of environmental parameters affecting corrosivity of atmospheres
28. ISO 9226:2012 – Corrosion of metals and alloys – Corrosivity of atmospheres Determination of corrosion rate of standard specimens for the evaluation of corrosivity
29. T. Biestek, Badania odporności korozyjnej powłok metalowych prowadzone w IMP, Materiały XXIX Seminarium IMP, Inżynieria Powierzchni – Technologie, Urządzenia, Badania, 1995
30. J. Kobus, J. Andziak, Czynniki decydujące o korozji w Polsce i w Europie, Ochrona przed Koroz., 2003, 46, 3, (62-68)
31. J. Kobus, Korozja cynku a środowisko, Ochrona przed Koroz., 2005, 48, 10, (320-323)
32. J. Kobus, M. Błasiak, C. Pérez, L. Kwiatkowski, Effect of natural conditions on corrosion rates of zinc and zinc coatings, Proceedings of the European Corrosion Congress Eurocorr 2005, Lisbon, Portugal, September 2005
33. J. Kobus, L. Kwiatkowski, Monitorowanie zagrożeń korozyjnych i ich skutków w warunkach korozji atmosferycznej, Inżynieria Powierzchni, 1, (2009), 3-15
34. J. Kobus, Charakterystyka pyłowych zanieczyszczeń powietrza, Ochrona przed Koroz., 2008, 52, 7, (269-274)
35. J. Tidblad, V. Kucera, A. A. Mikhailov, Report No 30 UN/ECE International Co-operative Programme on Effects of Air Pollution on Materials, including Historic and Cultural Monuments ( UN ECE ICP Materials), Stockholm, May 1998
36. V. Kucera, J. Tidblad, K. Kreislova, D. Knotkova, M. Faller, D. Reiss, R. Snethlage, T. Yates, J. Henriksen, M. Schreiner, UN/ECE ICP Materials, Dose – response functions for the multi-pollutant situation, Air& Soil Pollution: Focus, 7, 1-3, (2007), 249-258
37. T.Yates, R.Butlin, J.Medhurst, Proceedings of the UN ECE Workshop on Economic Evaluation of Air Pollution Abatement and Damage to Buildings including Cultural Heritage, Stockholm, 1996
38. J. Tidblad, A.A. Michailov, V. Kucera, Development of dose-response functions for the revision of ISO 9223 and comparison of calculated and experimental data, documents of ISO/TC 156-N384, 2001
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-7ed0897a-f744-402c-850a-7354afb3882e
Identyfikatory