Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-7e950b4b-3446-4de2-9110-1adda3328597

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Numerical investigations of the unsteady blood flow in the end-to-side arteriovenous fistula for hemodialysis

Autorzy Jodko, D.  Obidowski, D.  Reorowicz, P.  Jóźwik, K. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The aim of this study was to investigate the blood flow in the end-to-side arteriovenous (a-v) fistula, taking into account its pulsating nature and the patient-specific geometry of blood vessels. Computational Fluid Dynamics (CFD) methods were used for this analysis. Methods: DICOM images of the fistula, obtained from the angio-computed tomography, were a source of the data applied to develop a 3D geometrical model of the fistula. The model was meshed, then the ANSYS CFX v. 15.0 code was used to perform simulations of the flow in the vessels under analysis. Mesh independence tests were conducted. The non-Newtonian rheological model of blood and the Shear Stress Transport model of turbulence were employed. Blood vessel walls were assumed to be rigid. Results: Flow patterns, velocity fields, the volume flow rate, the wall shear stress (WSS) propagation on particular blood vessel walls were shown versus time. The maximal value of the blood velocity was identified in the anastomosis – the place where the artery is connected to the vein. The flow rate was calculated for all veins receiving blood. Conclusions: The blood flow in the geometrically complicated a-v fistula was simulated. The values and oscillations of the WSS are the largest in the anastomosis, much lower in the artery and the lowest in the cephalic vein. A strong influence of the mesh on the results concerning the maximal and area-averaged WSS was shown. The relation between simulations of the pulsating and stationary flow under time-averaged flow conditions was presented.
Słowa kluczowe
PL tętniak   anastomoza   choroba zatorowo-zakrzepowa   naprężenie styczne ścian  
EN aneurysm   anastomosis   arteriovenous fistula   thrombosis   wall shear stress   intimal hyperplasia  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2016
Tom Vol. 18, nr 4
Strony 3--13
Opis fizyczny Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor Jodko, D.
autor Obidowski, D.
  • Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
autor Reorowicz, P.
  • Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
autor Jóźwik, K.
  • Lodz University of Technology, Institute of Turbomachinery, Lodz, Poland
Bibliografia
[1] ANSYS CFX Theory & Meshing User’s Guide. ANSYS Release 15.0 ANSYS Inc.
[2] BOTTI L., CANNEYT K.V., KAMINSKY R., CLAESSENS T., PLANKEN R.N., VERDONCK P., REMUZZI A., ANTIGA L., Numerical Evaluation and Experimental Validation of Pressure Drops Across a Patient-Specific Model of Vascular Access for Hemodialysis, Cardiovasc. Eng. Technol., 2013, 4(4), 485–499.
[3] BRESCIA M.J., CIMINO J.E., APPEL K., HURWICH B.J., Chronic hemodialysis using venipuncture and a surgically created arteriovenous fistula, N. Engl. J. Med., 1966, 275(20), 1089–1092.
[4] CHATZIZISIS Y.S., COSCUN A.U., JONAS M., EDELMAN E.R., FELDMAN C.L., STONE P.H., Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling, Journal Am. Coll. Cardiol., 2007, 49(25), 2379–2393.
[5] CHIU J.-J., CHIEN S., Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives, Physiol. Rev., 2011, 91, 327–387.
[6] DECORATO I., KHARBOUTLY Z., VASSALLO T., PENROSE J., LEGALLAIS C., SALSAC A.-V., Numerical simulation of the fluid structure interactions in a compliant patient-specific arteriovenous fistula, Int. J. Numer Meth. Biomed. Enging., 2014, 30(2), 143–159.
[7] DIXON B.S., Why don’t fistulas mature? Kidney International, 2006, 70, 1413–1422.
[8] ENE-IORDACHE B., CATTANEO L., DUBINI G., REMUZZI A., Effect of anastomosis angle on the localization of disturbed flow in 'side-to-end' fistulae for haemodialysis access, Nephrol. Dial. Transplant., 2013, 28, 997–1005.
[9] ENE-IORDACHE B., REMUZZI A., Disturbed flow in radialcephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis, Nephrol. Dial. Transplant., 2012, 27, 358–368.
[10] JODKO D., OBIDOWSKI D., REOROWICZ P., JÓŹWIK K., Simulations of the blood flow in the arterio-venous fistula for haemodialysis, Acta Bioeng. Biomech., 2014, 16(1), 69–74.
[11] JODKO D., OBIDOWSKI D., REOROWICZ P., KŁOSIŃSKI P., JÓŹWIK K., Angular position determination of heart valves in the pediatric Ventricular Assist Device with use of Computational Fluid Dynamics, Aktualne Problemy Biomechaniki, 2014, 8, 57–62.
[12] JOHNSTON B.M., JOHNSTON P.R., CORNEY S., KILPATRICK D., Non-Newtonian blood flow in human right coronary arteries: steady state simulations, J. Biomech., 2004, 37, 709–720.
[13] JÓŹWIK K., OBIDOWSKI D., Numerical simulations of the blood flow through vertebral arteries, J. Biomech., 2010, 43, 177–185.
[14] KENNER T., The measurement of blood density and its meaning, Basic Res. Cardiol., 1989, 84, 111–124.
[15] KHARBOUTLY Z., DEPLANO V., BERTRAND E., LEGALLAIS C., Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis, Medical Engineering & Physics, 2010, 32(2), 111–118.
[16] KONNER K., NONNAST-DANIEL B., RITZ E., The Arteriovenous Fistula, J. Am. Soc. Nephrol., 2003, 14, 1669–1680.
[17] MCGAH P.M., LEOTTA D.F., BEACH K.W., ALISEDA A., Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula, Biomech. Model Mechanobiol., 2014, 13, 679–695.
[18] MCGAH P.M., LEOTTA D.F., BEACH K.W., ZIERLER R.E., ALISEDA A., Restoration of Homeostatic Shear Stress within Arteriovenous Fistulae, J. Biomech. Eng., 2013, 135(1), 51–59.
[19] MOORE S., Computational 3D Modelling of Hemodynamics in the Circle of Willis, University of Canterbury, PhD Dissertation 2007.
[20] OBIDOWSKI D., Blood flow simulation through human vertebral arteries, Łódź University of Technology, PhD Dissertation (in Polish) 2011.
[21] PIETURA R., JANCZAREK M., ZAŁUSKA W. et al., Colour Doppler ultrasound assessment of well-functioning mature arteriovenous fistulas for haemodialysis access, Eur. J. Radiol., 2005, 55(1), 113–119.
[22] REOROWICZ P., OBIDOWSKI D., KŁOSIŃSKI P., SZUBERT W., STEFAŃCZYK L., JÓŹWIK K., Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region, J. Biomech.. 2014, 47, 1642–1651.
[23] SHIN S., KEUM DO-Y., Measurement of blood viscosity using mass-detecting sensor, J. Biomech., 2002, 17, 383–388.
[24] SIVANESAN S., HOW T.V., BLACK R.A., BAKRAN A., Flow patterns in the radiocephalic arteriovenous fistula: an in vitro study, J. Biomech., 1999, 32, 915–925.
[25] U.S. Renal Data System Technical Report, “2014 USRDS Annual Data Report Volume 2: End-Stage Renal Disease”. Washington Heights.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-7e950b4b-3446-4de2-9110-1adda3328597
Identyfikatory
DOI 10.5277/ABB-00558-2016-02