PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interests of 5 axis toolpaths generation for Wire Arc Additive Manufacturing of aluminum alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive Manufacturing (AM) for metal part can be divided into two different types: The powder technology and the wire technology. Usually, powder is adapted for fine components and small parts whereas wire is used for structural components and large scale part. One of the main benefits of AM is to simplify assemblies by reducing the number of components and to provide a large freedom of design. A standard AM system consists of a combination of three blocks: a motion system, a heat source and a feedstock. For Wire Arc Additive Manufacturing (WAAM), the heat source is a welding generator and the feedstock is a wire. The motion system generally used is a 6 axis robot or a CNC machine. This paper aims to propose a methodology to generate 5 axis toolpaths for WAAM and highlight the main parameters which selection is a key issue to resolve. The goal is to compare 3 axis and 5 axis toolpaths on part accuracy, depending the clearance angle of the part.
Słowa kluczowe
Rocznik
Strony
51--65
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
  • Institut de Recherche en Génie Civil et Mécanique (GeM), Ecole Centrale de Nantes, France
autor
  • Institut de Recherche en Génie Civil et Mécanique (GeM), Ecole Centrale de Nantes, France
autor
  • Institut de Recherche en Génie Civil et Mécanique (GeM), Ecole Centrale de Nantes, France
Bibliografia
  • [1] RIVE E M., COË J.-Y., MOGNOL P., 2007, A graph-based methodology for hybrid rapid design, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 221/4, 685-697.
  • [2] MOGNO ., RIVE E M., JÉGO ., E RIER ., 2007, A first approach to choose between HSM, EDM and DMLS processes in hybrid rapid tooling, Rapid Prototyp. J., 13/1, 7-16.
  • [3] MULLER P., MOGNOL P., HASCOET J.Y., 2013, Modeling and control of a direct laser powder deposition process for Functionally Graded Materials (FGM) parts manufacturing, J. Mater. Process. Technol., 213/5, 685-692.
  • [4] HASCOET J.Y., MULLER P., MOGNOL P., 2011, Manufacturing of complex parts with continuous Functionally Graded Materials (FGM), Solid Free. Fabr. Symp., 557-569.
  • [5] GU J., CONG B., DING J., WILLIAMS S.W., ZHAI Y., 2014, Wire+arc additive manufacturing of aluminium, SFF Symp. Austin Texas, 451-458.
  • [6] DING J., COLEGROVE P., MARTINA F., WILLIAMS S., WIKTOROWICZ R., PALT M.R., 2015, Development of a laminar flow local shielding device for wire+arc additive manufacture, J. Mater. Process. Technol., 226, 99-105.
  • [7] Brochure of CMT, 2014, Cold Metal Transfer, Fronius, 16.
  • [8] WILLIAMS S.W., MARTINA F., ADDISON C., DING J., PARDAL G.,P., Colegrove P., 2016, Wire+arc additive manufacturing, Mater. Sci. Technol., 32/7, 641-647.
  • [9] KERNINON J., MOGNOL P., HASCOET J.Y., LEGONIDEC C., 2008, Effect of path strategies on metallic parts manufactured by additive process, Solid Free. Fabr. Symp., 352-361.
  • [10] DING D.H., PAN Z.X., DOMINIC C., LI H.J., 2015, Process planning strategy for wire and ARC additive manufacturing, Adv. Intell. Syst. Comput., 363, 437-450.
  • [11] DING D., PAN Z., CUIURI D., LI H., 2014, A tool-path generation strategy for wire and arc additive manufacturing, Int. J. Adv. Manuf. Technol., 73/1-4, 173-183.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e3203dd-6426-4b82-bbd2-257b322df0ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.