Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current Advances in Information Quantum Technologies : Critical Issues

Treść / Zawartość
Warianty tytułu
Języki publikacji
This article reviews chosen topics related to the development of Information Quantum Technologies in the major areas of measurements, communications, and computing. These fields start to build their ecosystems which in the future will probably coalesce into a homogeneous quantum information layer consisting of such interconnected components as quantum internet, full size quantum computers with efficient error corrections and ultrasensitive quantum metrology nodes stationary and mobile. Today, however, the skepticism expressing many doubts about the realizability of this optimistic view fights with a cheap optimism pouring out of some popular press releases. Where is the truth? Financing of the IQT by key players in research, development and markets substantially strengthens the optimistic side. Keeping the bright side with some reservations, we concentrate on showing the FAST pace of IQT developments in such areas as biological sciences, quantum evolutionary computations, quantum internet and some of its components.
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • [1] Google, “Demonstrating quantum supremacy,”, 2019, accessed on 2021/05/14.
  • [2] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019. [Online]. Available:
  • [3] H.-S. Zhong, H. Wang et al., “Quantum computational advantage using photons,” Science, vol. 370, no. 6523, pp. 1460–1463, 2020. [Online]. Available:
  • [4] S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” arXiv:1011.3245, 2010.
  • [5] P. Clifford and R. Clifford, “Faster classical boson sampling,” arXiv:2005.04214, 2020.
  • [6] B. Sodhi, “Quality attributes on quantum computing platforms,” arXiv:1803.07407, 2018.
  • [7] A. Lohrey and B. Boreham, “The nonlocal universe,” Communicative & Integrative Biology, vol. 13, no. 1, pp. 147–159, Jan. 2020. [Online]. Available:
  • [8] S. Popescu, “Nonlocality beyond quantum mechanics,” Nature Physics, vol. 10, no. 4, pp. 264–270, Apr. 2014. [Online]. Available:
  • [9] J. Conway and S. Kochen, “The free will theorem,” Foundations of Physics, vol. 36, no. 10, pp. 1441–1473, Jul. 2006. [Online]. Available:
  • [10] S. Goldstein, D. Tausk et al., “What does the free will theorem actually prove?” Notices of the American Mathematical Society, pp. 1451–1453, 05 2009.
  • [11] A. Aspect, “To be or not to be local,” Nature, vol. 446, no. 7138, pp. 866–867, Apr. 2007. [Online]. Available:
  • [12] T. Vidick and S. Wehner, “More non-locality with less entanglement,” 2010.
  • [13] M. Pawlowski, T. Paterek et al., “Information causality as a physical principle,” 2009.
  • [14] M. Kupczynski, “Entanglement and quantum nonlocality demystified,” 2012.
  • [15] T. M. Nieuwenhuizen and M. Kupczynski, “The contextuality loophole is fatal for the derivation of Bell inequalities: Reply to a comment by I. Schmelzer,” Foundations of Physics, vol. 47, no. 2, pp. 316–319, Jan. 2017. [Online]. Available:
  • [16] J.-G. Ren et al., “Ground-to-satellite quantum teleportation,” Nature, vol. 549, no. 7670, pp. 70–73, Aug. 2017. [Online]. Available:
  • [17] H.-Y. Liu et al., “Optical-relayed entanglement distribution using drones as mobile nodes,” Physical Review Letters, vol. 126, no. 2, Jan. 2021. [Online]. Available:
  • [18] T. van Leent, M. Bock et al., “Long-distance distribution of atom-photon entanglement at telecom wavelength,” Physical Review Letters, vol. 124, no. 1, Jan. 2020. [Online]. Available:
  • [19] J. Gariano and I. B. Djordjevic, “Theoretical study of a submarine to submarine quantum key distribution systems,” Optics Express, vol. 27, no. 3, p. 3055, Jan. 2019. [Online]. Available:
  • [20] I. R. Berchera and I. P. Degiovanni, “Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology,” Metrologia, vol. 56, no. 2, p. 024001, Jan. 2019. [Online]. Available:
  • [21] C. Hardy, “Nonlocal consciousness in the universe: panpsychism, psi and mind over matter in a hyperdimensional physics,” Journal of Nonlocality, vol. (submitted), 09 2016.
  • [22] G. Musser, “Where is here?” Scientific American, vol. 313, no. 5, pp. 70–73, Oct. 2015. [Online]. Available:
  • [23] J.-L. Li and C.-F. Qiao, “The bedrock of quantum nonlocality,” arXiv:2008.06393, 2020.
  • [24] P. Gill, “When should we change the definition of the second?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1953, pp. 4109–4130, Oct. 2011. [Online]. Available:
  • [25] J. C. Hafele and R. E. Keating, “Around-the-world atomic clocks: Predicted relativistic time gains,” Science, vol. 177, no. 4044, pp. 166–168, 2021/05/15/ 1972, full publication date: Jul. 14, 1972. [Online]. Available:
  • [26] B. Abbott, R. Abbott et al., “Observation of gravitational waves from a binary black hole merger,” Physical Review Letters (PRL), vol. 116, 02 2016.
  • [27] R. Bajaj, S. Ranaweera et al., “GPS: Location-tracking technology,” Computer, vol. 35, pp. 92–94, 05 2002.
  • [28] P. Alanna, “The atomic clock is the latest tool for high-frequency traders,”, 2017, accessed on 2021/05/27.
  • [29] I. Kruse, K. Lange et al., “Improvement of an atomic clock using squeezed vacuum,” Physical Review Letters, vol. 117, 09 2016.
  • [30] E. Pedrozo-Peñafiel, S. Colombo et al., “Entanglement-enhanced optical atomic clock,” 2020.
  • [31] A. D. Ludlow, M. M. Boyd et al., “Optical atomic clocks,” Rev. Mod. Phys., vol. 87, pp. 637–701, Jun. 2015. [Online]. Available:
  • [32] W. F. McGrew, X. Zhang et al., “Atomic clock performance enabling geodesy below the centimetre level,” Nature, vol. 564, no. 7734, pp. 87–90, Nov. 2018. [Online]. Available:
  • [33] M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado et al., “Test of general relativity by a pair of transportable optical lattice clocks,” Nature Photonics, vol. 14, pp. 1–5, 07 2020.
  • [34] J. I. Cirac, A. K. Ekert et al., “Distributed quantum computation over noisy channels,” Physical Review A, vol. 59, no. 6, p. 4249–4254, Jun. 1999. [Online]. Available:
  • [35] E. O. Ilo-Okeke, L. Tessler et al., “Remote quantum clock synchronization without synchronized clocks,” npj Quantum Information, vol. 4, no. 1, Aug. 2018. [Online]. Available:
  • [36] S. Wehner, D. Elkouss et al., “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018. [Online]. Available:
  • [37] M. Cao, F. Hoffet et al., “Efficient reversible entanglement transfer between light and quantum memories,” 06 2020.
  • [38] K. Azuma, K. Tamaki et al., “All-photonic quantum repeaters,” Nature Communications, vol. 6, no. 1, Apr. 2015. [Online]. Available:
  • [39] J. Yin, Y.-H. Li et al., “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, pp. 1–5, 06 2020.
  • [40] N. P. de Leon, K. M. Itoh et al., “Materials challenges and opportunities for quantum computing hardware,” Science, vol. 372, no. 6539, 2021. [Online]. Available:
  • [41] D. Castelvecchi, “Quantum network is step towards ultrasecure internet,” Nature, vol. 590, 02 2021.
  • [42] N. B. Lingaraju, H.-H. Lu et al., “Adaptive bandwidth management for entanglement distribution in quantum networks,” Optica, vol. 8, no. 3, p. 329, Mar. 2021. [Online]. Available:
  • [43] Y. Yu, F. Ma et al., “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, p. 240–245, Feb. 2020. [Online]. Available:
  • [44] Y.-A. Chen, Q. Zhang et al., “An integrated space-to-ground quantum communication network over 4,600 kilometres,” Nature, vol. 589, 01 2021.
  • [45] A. I. Lvovsky, B. C. Sanders et al., “Optical quantum memory,” Nature Photonics, vol. 3, no. 12, pp. 706–714, Dec. 2009. [Online]. Available:
  • [46] K. Heshami, D. G. England et al., “Quantum memories: emerging applications and recent advances,” Journal of Modern Optics, vol. 63, no. 20, pp. 2005–2028, Mar. 2016. [Online]. Available:
  • [47] P. Vernaz-Gris, K. Huang et al., “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nature Communications, vol. 9, no. 1, Jan. 2018. [Online]. Available:
  • [48] Y. Wang, J. Li et al., “Efficient quantum memory for single-photon polarization qubits,” Nature Photonics, vol. 13, no. 5, pp. 346–351, Mar. 2019. [Online]. Available:
  • [49] P.-J. Tsai, Y.-F. Hsiao et al., “Quantum storage and manipulation of heralded single photons in atomic memories based on electromagnetically induced transparency,” Phys. Rev. Research, vol. 2, p. 033155, Jul. 2020. [Online]. Available:
  • [50] D. Main, T. M. Hird et al., “Room temperature atomic frequency comb memory for light,” arXiv:2011.03765, 2020.
  • [51] G. P. Teja, C. Simon et al., “Photonic quantum memory using an intra-atomic frequency comb,” Physical Review A, vol. 99, no. 5, May 2019. [Online]. Available:
  • [52] G. P. Teja, C. Simon et al., “Erratum: Photonic quantum memory using an intra-atomic frequency comb [phys. rev. a 99 , 052314 (2019)],” Physical Review A, vol. 102, no. 1, Jul. 2020. [Online]. Available:
  • [53] C. Liu, T.-X. Zhu et al., “On-demand quantum storage of photonic qubits in an on-chip waveguide,” Physical Review Letters, vol. 125, no. 26, Dec. 2020. [Online]. Available:
  • [54] R. Noek, G. Vrijsen et al., “High speed, high fidelity detection of an atomic hyperfine qubit,” Optics Letters, vol. 38, no. 22, p. 4735, Nov. 2013. [Online]. Available:
  • [55] Y. Lin, J. P. Gaebler et al., “Sympathetic electromagnetically-induced-transparency laser cooling of motional modes in an ion chain,” Phys. Rev. Lett., vol. 110, p. 153002, Apr. 2013. [Online]. Available:
  • [56] R. Bowler, J. Gaebler et al., “Coherent diabatic ion transport and separation in a multizone trap array,” Physical Review Letters, vol. 109, no. 8, Aug. 2012. [Online]. Available:
  • [57] T. Ruster, C. Warschburger et al., “Experimental realization of fast ion separation in segmented Paul traps,” Physical Review A, vol. 90, no. 3, Sep. 2014. [Online]. Available:
  • [58] D. Kielpinski, C. Monroe et al., “Architecture for a large-scale ion-trap quantum computer,” Nature, vol. 417, no. 6890, pp. 709–711, Jun. 2002. [Online]. Available:
  • [59] A. G. Fowler, M. Mariantoni et al., “Surface codes: Towards practical large-scale quantum computation,” Physical Review A, vol. 86, no. 3, Sep. 2012. [Online]. Available:
  • [60] C. Ballance, T. Harty et al., “High-fidelity quantum logic gates using trapped-ion hyperfine qubits,” Physical Review Letters, vol. 117, no. 6, Aug. 2016. [Online]. Available:
  • [61] J. Gaebler, T. Tan et al., “High-fidelity universal gate set forBe9ion qubits,” Physical Review Letters, vol. 117, no. 6, Aug. 2016. [Online]. Available:
  • [62] V. M. Schäfer, C. J. Ballance et al., “Fast quantum logic gates with trapped-ion qubits,” Nature, vol. 555, no. 7694, pp. 75–78, Mar. 2018. [Online]. Available:
  • [63] R. Barends, J. Kelly et al., “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503, Apr. 2014. [Online]. Available:
  • [64] M. Veldhorst, C. H. Yang et al., “A two-qubit logic gate in silicon,” Nature, vol. 526, no. 7573, pp. 410–414, Oct. 2015. [Online]. Available:
  • [65] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available:
  • [66] P. Ball, “Physics of life: The dawn of quantum biology,” Nature, vol. 474, pp. 272–4, 06 2011.
  • [67] B. P. Lanyon, J. D. Whitfield et al., “Towards quantum chemistry on a quantum computer,” Nature Chemistry, vol. 2, no. 2, p. 106–111, Jan. 2010. [Online]. Available:
  • [68] A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2, p. 117–173, Feb. 1998. [Online]. Available:
  • [69] E. Pednault, J. A. Gunnels et al., “Leveraging secondary storage to simulate deep 54-qubit Sycamore circuits,” arXiv:1910.09534, 2019.
  • [70] J. H. Holland, “Genetic algorithms,” Scientific American, Jul. 1992.
  • [71] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.
  • [72] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – a comprehensive introduction,” Natural Computing: An International Journal, vol. 1, no. 1, p. 3–52, May 2002. [Online]. Available:
  • [73] K.-H. Han and J.-H. Kim, “Genetic quantum algorithm and its application to combinatorial optimization problem,” vol. 1354-1360, 07 2003.
  • [74] M. Udrescu, L. Prodan et al., “Implementing quantum genetic algorithms: A solution based on Grover’s algorithm,” in Proceedings of the 3rd Conference on Computing Frontiers, ser. CF ’06. New York, NY, USA: Association for Computing Machinery, 2006, p. 71–82. [Online]. Available:
  • [75] D. A. Sofge, “Prospective algorithms for quantum evolutionary computation,” arXiv:0804.1133, 2008.
  • [76] L. K. Grover, “Quantum search on structured problems,” Chaos, Solitons Fractals, vol. 10, no. 10, p. 1695–1705, Sep. 1999. [Online]. Available:
  • [77] A. Malossini, E. Blanzieri et al., “Quantum genetic optimization,” IEEE Transactions on Evolutionary Computation, vol. 12, 05 2008.
  • [78] D. Johannsen, P. Kurur et al., “Can quantum search accelerate evolutionary algorithms?” 01 2010, pp. 1433–1440.
  • [79] A. SaiToh, R. Rahimi et al., “A quantum genetic algorithm with quantum crossover and mutation operations,” Quantum Information Processing, vol. 13, no. 3, p. 737–755, Nov. 2013. [Online]. Available:
  • [80] D. Osinga, Deep learning cookbook :. Mumbai :: Shroff Publishers Distributors., 2018.
  • [81] Y. Li, R.-G. Zhou et al., “A quantum deep convolutional neural network for image recognition,” Quantum Science and Technology, vol. 5, no. 4, p. 044003, Jul. 2020. [Online]. Available:
  • [82] R. P. Feynman, “Simulating physics with computers,” International journal of theoretical physics, vol. 21, no. 6/7, pp. 467–488, 1982.
  • [83] J. Biamonte, P. Wittek et al., “Quantum machine learning,” Nature, vol. 549, no. 7671, p. 195–202, Sep. 2017. [Online]. Available:
  • [84] Y. LeCun, Y. Bengio et al., “Deep Learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015. [Online]. Available:
  • [85] T. D. Ladd, F. Jelezko et al., “Quantum computers,” Nature, vol. 464, no. 7285, p. 45–53, Mar. 2010. [Online]. Available:
  • [86] M. Schuld, I. Sinayskiy et al., “The quest for a quantum neural network,” Quantum Information Processing, vol. 13, no. 11, p. 2567–2586, Aug. 2014. [Online]. Available:
  • [87] V. Giovannetti, S. Lloyd et al., “Architectures for a quantum random access memory,” Physical Review A, vol. 78, no. 5, Nov. 2008. [Online]. Available:
  • [88] P. S. Emani, J. Warrell et al., “Quantum computing at the frontiers of biological sciences,” Nature Methods, Jan. 2021. [Online]. Available:
  • [89] C. Outeiral, M. Strahm et al., “The prospects of quantum computing in computational molecular biology,” WIREs Computational Molecular Science, vol. 11, no. 1, May 2020. [Online]. Available:
  • [90] S. Behjati and P. S. Tarpey, “What is next generation sequencing?” Archives of disease in childhood - Education & practice edition, vol. 98, no. 6, pp. 236–238, Aug. 2013. [Online]. Available:
  • [91] A. W. Harrow, A. Hassidim et al., “Quantum algorithm for linear systems of equations,” Physical Review Letters, vol. 103, no. 15, Oct. 2009. [Online]. Available:
  • [92] B.-J. Yoon, “Hidden Markov Models and their applications in biological sequence analysis,” Current Genomics, vol. 10, no. 6, pp. 402–415, Sep. 2009. [Online]. Available:
  • [93] H. Nicole, “2021 could be the year of quantum drug discovery,”, 2021, accessed on 2021/05/14.
  • [94] Y. Cao, J. Romero et al., “Potential of quantum computing for drug discovery,” IBM Journal of Research and Development, vol. 62, no. 6, pp. 6:1–6:20, 2018.
  • [95] D. Solenov, J. Brieler et al., “The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine,” Missouri medicine, vol. 115, pp. 463–467, 09 2018.
  • [96] V. Giovannetti, S. Lloyd et al., “Quantum random access memory,” Phys. Rev. Lett., vol. 100, p. 160501, Apr. 2008. [Online]. Available:
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.