
http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-7cd3c6d4-4d3f-4b7a-9c7d-f121ed5a5269

Czasopismo |
Combustion Engines |
|||||||||||||||||
Tytuł artykułu |
Numerical investigation on low calorific syngas combustion in the opposed-piston engine |
|||||||||||||||||
Autorzy | Pyszczek, R. Mazuro, P. Jach, A. Teodorczyk, A. | |||||||||||||||||
Treść / Zawartość | ||||||||||||||||||
Warianty tytułu |
|
|||||||||||||||||
Języki publikacji | EN | |||||||||||||||||
Abstrakty |
|
|||||||||||||||||
Słowa kluczowe |
|
|||||||||||||||||
Wydawca |
Polskie Towarzystwo Naukowe Silników Spalinowych |
|||||||||||||||||
Czasopismo | Combustion Engines | |||||||||||||||||
Rocznik | 2017 | |||||||||||||||||
Tom | R. 56, nr 2 | |||||||||||||||||
Strony | 53--63 | |||||||||||||||||
Opis fizyczny | Bibliogr. 28 poz., wykr. | |||||||||||||||||
Twórcy |
|
|||||||||||||||||
Bibliografia |
[1] LIEUWEN, T., YANG, V., YETTER, R. Synthesis gas combustion: fundamentals and applications. Taylor & Francis Group; 2010.
[2] BADE SHRESTHA, S.O., KARIM, G.A. Hydrogen as an additive to methane for spark ignition engine applications. International Journal of Hydrogen Energy. 24(6), 577-586. [3] PUSHP, M., MANDE, S. Development of 100% producer gas engine and field testing with pid governor mechanism for variable load operation. SAE Technical Paper. 2008, 2008-28-0035. [4] YAMASAKI, Y., TOMATSU, G., NAGATA, Y., KANEKO, S. Development of a small size gas engine system with biomass gas (combustion characteristics of the wood chip pyrolysis gas). SAE Technical Paper. 2007, 2007-01-3612. [5] ANDO, Y., YOSHIKAWA, K., BECK, M., ENDO, H. Research and development of a low-BTU gas-driven engine for waste gasification and power generation. Energy. 30(11–12), 2206-2218. [6] TOMITA, E., FUKATANI, N., KAWAHARA, N. et al. Combustion characteristics and performance of supercharged pyrolysis gas engine with micro-pilot ignition. CIMAC congress. 2007. Paper No. 178. [7] ROY, M.M., TOMITA, E., KAWAHARA, N. et al. Effect of fuel injection parameters on engine performance and emissions of a supercharged producer gas-diesel dual fuel engine. SAE Technical Paper. 2009, 2009-01-1848. [8] ROY, M.M., TOMITA E., KAWAHARA N. et al. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content. International Journal of Hydrogen Energy. 2009. [9] ROY, M.M., TOMITA, E., KAWAHARA N. et al. Performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas. International Journal of Hydrogen Energy. 2009. [10] AZIMOV, U., TOMITA, E., KAWAHARA, N. Ignition, Combustion and exhaust emission characteristics of micropilot ignited dual-fuel engine operated under PREMIER combustion mode. SAE Technical Paper. 2011, 2011-01-1764. [11] AZIMOV U., TOMITA E., KAWAHARA N., HARADA Y. Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode. International Journal of Hydrogen Energy. 2011, 36, 11985–11996. [12] AZIMOV, U., OKUNO, M., TSUBOI, K. et al. Multidimensional CFD simulation of syngas combustion in a micropilotignited dual-fuel engine using a constructed chemical kinetics mechanism. International Journal of Hydrogen Energy. 2011, 36, 13793–13807. [13] ZHAO, H. HCCI and CAI engines for the automotive industry. Woodhead Publishing. 2007. [14] BHADURI, S., BERGER, B., POCHET, M. et al. HCCI engine operated with unscrubbed biomass syngas. Fuel Processing Technology. 2017, 157, 52-58. [15] FLINT M. Opposed Piston Engines: Evolution, Use, and Future Applications. Warrendale: SAE International. 2010 [16] HEROLD, R.E., WAHL, M.H., REGNER, G. et al. Thermodynamic benefits of opposed-piston two stroke engines. SAE Technical Paper. 2011, 2011-01-2216. [17] RANZI, E., FRASSOLDATI, A., GRANA, R. et al. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science. 2012, 38(4), 468-501. [18] SMITH, G.P., GOLDEN, D.M., FRENKLACH, M. et al. “GRI-Mech 3.0.” [19] WANG, H., YOU, X., JOSHI, A.V. et al. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. [20] RANZI, E., FRASSOLDATI, A., GRANA, R. et al. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science. 2012, 38(4), 468-501. [21] Mechanical and Aerospace Engineering (Combustion Research) – University of California at San Diego, “Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page.” [22] PATEL, A., KONG, S., REITZ, R. Development and validation of a reduced reaction mechanism for HCCI engine simulations. SAE Technical Paper. 2004, 2004-01-0558. [23] BURKE, U., SOMERS, K.P., O’TOOLE, P. et al. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combustion and Flame. 2015, 162(2) 315-330. [24] ZHANG, K., BANYON, C., BUGLER, J., et al. An updated experimental and kinetic modeling study of n-heptane oxidation. Combustion and Flame. 2016, 172, 116-135. [25] ROZENCHAN, G., ZHU, D.L., LAW, C.K., TSE, S.D. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 ATM. Proceedings of the Combustion Institute. 2002, 29(2), 1461-1470. [26] JERZEMBECK, S., PETERS, N., PEPIOT-DESJARDINS, P., PITSCH, H. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation. Combustion and Flame. 2009, 156(2), 292-301. [27] HANJALIĆ, K., POPOVAC, M., HADZIABDIĆ, M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. International Journal of Heat and Fluid Flow. 2004, 25(6), 1047-1051. [28] Regulation (EU) 2016/1628 of the European Parliament and of the Council of 14 September 2016 on requirements relating to gaseous and particulate pollutant emission limits and type-approval for internal combustion engines for non-road mobile machinery. |
|||||||||||||||||
Kolekcja | BazTech | |||||||||||||||||
Identyfikator YADDA | bwmeta1.element.baztech-7cd3c6d4-4d3f-4b7a-9c7d-f121ed5a5269 | |||||||||||||||||
Identyfikatory |
|