PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method of increasing the accuracy of low-stiffness shafts: single-pass traverse grinding without steady rests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a method of increasing the shape and dimensional accuracy of low-stiffness shafts manufactured in a single pass of a grinding wheel in traverse grinding. One-pass manufacturing is one of the ways for reducing machining time and increasing efficiency, thus lowering production costs. However, maintaining the necessary accuracy proves to be a challenge because the whole machining allowance has to be removed at once, leaving no room for errors that could be fixed in additional passes of the tool. It is especially true in finishing operations, such as traverse grinding. In addition, grinding the workpiece in a single pass of a grinding wheel leads to high forces, which cause elastic deformation of the part. The lower the stiffness of the part, the more difficult it is to achieve the required accuracy. As a result, there are many methods of improving the accuracy of grinding such parts, but they tend to be either expensive or reduce the machining efficiency. Thus, it is important to seek new methods that would allow improving the accuracy of the machining without reducing its efficiency. The proposed method does not require using steady rests and is based on the measurement of the normal grinding force component. Knowing the value of the grinding force when grinding with a set grinding depth, the elastic deformation of the machine tool–tool–workpiece system is calculated in each position of the grinding wheel. Based on the calculated deformation, the additional infeed of the grinding wheel is implemented in order to stabilise real grinding depth and to increase the accuracy of the produced part. The experimental tests were conducted to prove the effectiveness of the proposed method.
Rocznik
Strony
357--364
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Han X., Wu T. Analysis of acoustic emission in precision and high-efficiency grinding technology. Int J Adv Manuf Tech. 2013; 67(9):1997-2006.
  • 2. Oczoś K. Characteristics of development trends in grinding with grinding wheels. Materials of XXIII Scientific Abrasive Conference .2000; 13-62.
  • 3. Kopac J., Krajnik P. High-performance grinding – A review..J Mater Process Tech. 2006;175:278-284.
  • 4. Klocke F., Barth S., Mattfeld P. High Performance Grinding. Procedia CIRP. 2016;46:266-271.
  • 5. Klocke F., Soo L., Karpuschewski B., Webster J., Novovic D., Elfizy A., Axinte D., Tönissen S. Abrasive machining of advanced aero-space alloys and composites. CIRP Annals – Manufacturing Tech-nology. 2015;64(2):581-604.
  • 6. Kalchenko V., Pogiba N., Kalchenko D. Determination of Cutting Force Components in Creep-Feed Grinding of Revolution Surfaces Using an Oriented Elbor Wheel. J Superhard Mater. 2012;34(2): 118-130.
  • 7. Żyłka Ł., Babiarz R. Dressing process in the grinding of aerospace blade root. J Mech Sci Technol. 2017;31(9): 4411-4417.
  • 8. Webster J., Tricard M. Innovations in Abrasive Products for Precision Grinding. CIRP Annals. 2004;53(2):597-617.
  • 9. Nadolny K. A review on single-pass grinding processes.. J Cent South Univ. 2013;20:1502-1509.
  • 10. Burek J., Sułkowicz P., Babiarz R., Płodzień M. Cylindrical Continu-ous Path Controlled Grinding with Profile Grinding Wheel Type 1F1. Reszow Uniwersity of Technology Scientific Letters, Mechanics. 2017;89(4):449-456.
  • 11. Marinescu I. D., Hitchiner M. P., Uhlmann E., Rowe W. B., Inasaki I. Handbook of Machining with Grinding Wheels. CRC Press,. 2016.
  • 12. Urbicain G., Olvera D., Fernandez A., Rodriguez L., Tabernero L.N. Stability Lobes in Turning of Low Rigidity Components. Adv Mat Res. 2012;498:576-585.
  • 13. Porzycki J., Batsch A., Oczoś K. A two-parameter adaptive control system for the traverse cylindrical grinding process. IFAC Proceed-ings Volumes. 1980;13(10):151-154.
  • 14. Amitay G. Malkin S., Koren Y. Adaptive Control Optimization of Grinding. . J Eng Ind. 1981;103(1):103-108.15. Gao Y., Jones B. Control of the traverse grinding process using dynamically active workpiece steadies. . Int J Mach Tool Manu. 1993;33(2):231-244.
  • 16. Park C., Kim D., Lee S. Shape prediction during the cylindrical trav-erse grinding of a slender workpiece. J Mater Process Tech. 1999;88:23-32.
  • 17. Choi H., Lee S. Machining error compensation of external cylindrical grinding using thermally actuated rest. Mechatronics. 2002;12: 643-656.
  • 18. Kruszyński B., Lajmert W. An intelligent system for online optimiza-tion of the cylindrical traverse grinding operation. Int J Eng Manu. 2006;3:355-363.
  • 19. Świć A., Taranenko W. Adaptive control of machining accuracy of axial – symmetrical lowrigidity parts in elastic – deformable state. Maintenance and Reliability. 2012;3:215-221.
  • 20. Parenti P., Bianchi G. Model-based adaptive process control for surface finish improvement in traverse grinding. Mechatronics. 2016;36:97-111.
  • 21. Saljẻ E., Mushardt H. Aufbau einer Optimierregelung für einen mehrstufigen Schleifprozess. Werkstattstechnik. 1975;65:335-338.
  • 22. Burek J. Stabilization of normal grinding force component in multi-stage plunge grinding. PhD thesis (Rzeszow University of Technolo-gy). 1985.
  • 23. Onishi T., Kodani T., Ohashi K., Sakakura M., Tsukamoto S. Study on the Shape Error in the Cylindrical Traverse Grinding of a Work-piece with High Aspect Ratio. Adv Mat Res. 2014;10(17):78-81.
  • 24. Burek J., Sułkowicz P., Babiarz R. Cylindricity error measurement and compensation in traverse grinding of low-stiffness shafts. Mechanik. 2018;91(11):970-972.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c7f954f-515c-4af6-a630-ead9c3b4551c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.