Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button



Tytuł artykułu

Narrowband shortwave minima of multispectral reflectance as indication of algal blooms associated with the mesoscale variability in the Brazil-Malvinas Confluence

Autorzy Karabashev, G. S.  Evdoshenko, M. A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN We examine the narrowband shortwave minima (NSM) of multispectral reflectance as indication of mesoscale algal blooms. They are frequent in the Brazil-Malvinas confluence zone (BMCZ) where our testing site (TS) belongs. Its MODIS A images of December 2008 and 2014 were the source of initial data. Classification of reflectance spectra in these images revealed that the TS look from space was determined by the most populated cluster of pixels having the only NSM at 443 nm. We divided this cluster into sub-clusters by maximum wavelengths λmaxfrom 412 to 555 nm and retrieved the estimates of λmax(proxy for abundance of colored dissolved organic matter (CDOM)), chl_a (MODIS chlorophyll), Rrs(555) (turbidity proxy), and CALH(NSM-based chlorophyll) on a pixel-by-pixel basis. This allowed us to demonstrate: (1) the NSM magnitude at 443 nm peaked in mesoscale structures, (2) CALHwas consistent with chlorophyll in the BMCZ waters samples, (3) positive linear correlation of Rrs(555) and CALHwas characteristic of the TS waters at any λmax, (4) the MODIS chl_a was overestimated when λmax> 488 nm, (5) localization and outlines of mesoscale structures agreed well in the fields of pairs Rrs(555) – CALHand λmax– chl_a, but not in the CALH– chl_a pair. The NSM-based chlorophyll CALHoutperformed the standard chl_a determinations in exactness because the CALHis insensitive to CDOM. This is advantageous when studying the Case 1 waters of intensive mesoscale variability where chlorophyll co-exists with the CDOM from eddy-induced blooms.
Słowa kluczowe
EN algae   bloom   pigments   reflectance spectrum   MODIS   Moderate Resolution Imaging Spectrometer   Brazil-Malvinas confluence  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Czasopismo Oceanologia
Rocznik 2018
Tom No. 60 (4)
Strony 527--543
Opis fizyczny Bibliogr. 52 poz., mapy, wykr.
autor Karabashev, G. S.
  • Laboratory of Ocean Optics, Shirshov Institute of Oceanology RAS, Moscow, Russia,
autor Evdoshenko, M. A.
  • Laboratory of Ocean Optics, Shirshov Institute of Oceanology RAS, Moscow, Russia
[1] Acha, E. A., Mianzan, H. W., Guerrero, R. A., Favero, M., Bava, J., 2004. Marine fronts at the continental shelves of austral South America. J. Mar. Syst. 44 (1-2), 83-105,
[2] Aiken, J., 2001. Fluorometry for biological sensing. In: Steele, J. H., Turekian, K. K., Thorpe, S. A. (Eds.), Encyclopedia of Ocean Sciences. Acad. Press, London, 1695-1945,
[3] Balch, W. M., Drapeau, D. T., Bowler, B. C., Lyczkowski, E. R., Lubelczyk, L. C., Painter, S. C., Poulton, A. J., 2014. Surface biological, chemical, and optical properties of the Patagonian Shelf coccolithophore bloom, the brightest waters of the Great Calcite Belt. Limnol. Oceanogr. 59 (5), 1715-1732,
[4] Barton, E. D., 2001. Island wakes. In: Steele, J. H., Turekian, K. K., Thorpe, S. A. (Eds.), Encyclopedia of Ocean Sciences. Acad. Press, London, 1397-1403,
[5] Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., Brando, V. E., 2014. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progr. Oceanogr. 123, 123-144.
[6] Chen, W., Wangersky, P. J., 1996a. Production of dissolved organic carbon in phytoplankton cultures as measured by high-temperature catalytic oxidation and ultraviolet photo-oxidation methods. J. Plankton Res. 18, 1201-1211,
[7] Chen, W., Wangersky, P. J., 1996b. Rates of microbial degradation of dissolved organic carbon from phytoplankton cultures. J. Plankton Res. 18, 1521-1533,
[8] Clarke, G. L., Ewing, G. C., Lorenzen, C. J., 1970. Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration. Science 167 (3921), 1119-1121,
[9] d'Ortenzio, F., Marullo, S., Ragni, M., d'Alcalà, M. R., Santoleri, R., 2002. Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas. Remote Sens. Environ. 82 (1), 79-94,
[10] d'Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y., Levy, M., 2010. Fluid dynamical niches of phytoplankton types. PNAS 107 (43), 18366-18370.
[11] Dupouy, C., Benielli-Gary, D., Neveux, J., Dandonneautelesc, Y., Westberry, T. K., 2011. An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific. Biogeosciences 8, 3631-3647.
[12] Ferreira, A., Stramski, D., Garcia, C. A. E., Garcia, V. M. T., Ciotti, A. M., Mendes, C. R. B., 2013. Variability in light absorption and scattering of phytoplankton in Patagonian waters: role of community size structure and pigment composition. J. Geophys. Res. Oceans 118 (2), 698-714,
[13] Garcia, C. A. E., Garcia, V. M. T., McClain, C. R., 2005. Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sens. Environ. 95, 125-137,
[14] Garcia, V. M. T., Garcia, C. A. E., Mata, M. M., Pollery, R. C., Piola, A. R., Signorini, S. R., McClain, C. R., Iglesias-Rodriguez, M. D., 2008. Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep-Sea Res. Pt. I 55, 1150-1166,
[15] Georges, C., Monchy, S., Genitsaris, S., Christaki, U., 2014. Protist community composition during early phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean). Biogeosciences 11, 5847-5863,
[16] Gordon, H. R., McCluney, W. R., 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl. Optics 14, 413-416.
[17] Hu, C., Lee, Z., Franz, B., 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. J. Geophys. Res. 117, C01011,
[18] Jerlov, N. G., 1976. Marine Optics. Elsevier, Amsterdam, 233 pp.
[19] Kalle, K., 1963. Über das Verhalten und die Herkunft der in den Gewässern und in der Atmosphäre vorhandenen himmelblauen Fluoreszenz. Deutsche Hydrografische Zeitschrift 16, 153-166.
[20] Karabashev, G. S., 1987. Fluorescence in the Ocean. Gidrometeoizdat, Leningrad,, 200 pp., (in Russian).
[21] Karabashev, G. S., Evdoshenko, M. A., 2015a. Spectral features of cyanobacterial bloom in the Baltic Sea from MODIS data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 12 (3), 158-170, (in Russian).
[22] Karabashev, G. S., Evdoshenko, M. A., 2015b. On spectral indications of cyanobacteria blooms at ecologically different aquatic areas from satellite data. In: Proc. VIII Int. Conf. “Current Problems in Optics of Natural Waters” (ONW'2015), Saint-Petersburg, 171-176,
[23] Karabashev, G. S., Evdoshenko, M. A., 2016. Narrowband shortwave minima in spectra of backscattered light from the sea obtained from ocean color scanners as a remote indication of algal blooms. Oceanologia 58 (5), 279-291,
[24] Karabashev, G. S., Evdoshenko, M. A., 2017a. Shortwave minimums of reflectance of water surface as a remote indication of blooms of Nodularia spumigena in the southern Caspian Sea, 2017. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 14 (1), 159-174, (in Russian).
[25] Karabashev, G. S., Evdoshenko, M. A., 2017b. A new approach to satellite diagnostics of phytoplankton blooms from reflectance spectra of ocean surface. In: Proc. IX Int. Conf. “Current Problems in Optics of Natural Waters” (ONW'2017), Saint-Petersburg, 123-126.
[26] Kopelevich, O. V., Burenkov, V. I., Goldin, Yu. A., Sheberstov, S. V., 2005. Bio-optical studies in the Atlantic ocean combining satellite and ship measured data. In: Proc. III Int. Conf. “Current Problems in Optics of Natural Waters” (ONW'20005), Saint-Petersburg, 193-198.
[27] Kopelevich, O. V., Sheberstov, S. V., Sahling, I. V., Vazyulya, S. V., Burenkov, V. I., 2013. Bio-optical Characteristics of the Barents, White, Black, and Caspian Seas from Data of Satellite Ocean Color Scanners,
[28] Letelier, R., Abbott, M., 1996. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. Environ. 58, 215-223,
[29] Loder, J. W., Boicourt, W. C., Simpson, J. H., 1998. Western ocean boundary shelves coastal segment (W). In: Robinson, A. R., Brink, K. H. (Eds.), The Sea, vol. 11. Wiley, New York, 3-27.
[30] Lubac, B., Loisel, H., 2007. Variability and classification of remote sensing reflectance spectra in the Eastern English Channel and Southern North Sea. Remote Sens. Environ. 110, 45-58.
[31] Mahadevan, A., 2016. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8, 161-184,
[32] Matano, R. P., Palma, E. D., 2008. On the upwelling of downwelling currents. J. Phys. Oceanogr. 38, 2482-2500,
[33] Matano, R. P., Palma, A. R., Piola, A., 2010. The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf circulation. Ocean Sci. 6, 983-995,
[34] McClain, C., 2001. Ocean color from satellites. In: Steele, J. H., Turekian, K. K., Thorpe, S. A. (Eds.), Encyclopedia of Ocean Sciences. Acad. Press, London, 1695-1945,
[35] McGillicuddy Jr., D. J., 2001. Small-scale patchiness, models of. In: Steele, J. H., Turekian, K. K., Thorpe, S. A. (Eds.), Encyclopedia of Ocean Sciences. Acad. Press, London, 2820-2833,
[36] McGillicuddy Jr., D. J., Anderson, L. A., Bates, N. R., Bibb, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Qian, P. Li, Siegel, D. A., Steinberg, D. K., 2007. Eddy/wind interactions stimulate extraordinary midocean plankton blooms. Science 316 (5827), 1021-1026,
[37] McGillicuddy Jr., D. J., Robinson, A. R., Siegel, D. A., Jannasch, H. W., Johnson, R., Dickey, T. D., McNeil, J., Michaels, A. F., Knap, A. H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394 (6690), 263-266,
[38] Mobley, C. D., Stramski, D., Bisset, W. P., Boss, E., 2004. Optical modeling of ocean water. Is the Case 1-Case 2 classification still useful? Oceanography 17 (2), 60-67.
[39] Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content. J. Geophys. Res. 93 (10), 749-768,
[40] Morel, A., 2009. Are the empirical relationships describing the biooptical properties of case 1 waters consistent and internally compatible? J. Geophys. Res. 114, C01016,
[41] Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., Franz, B. A., 2007. Examining the consistency of products derived from various ocean sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69-88,
[42] Moreno, D. V., Pérez Marrero, J., Morales, J., Llerandi García, C., Villagarcía Úbeda, M. G., Rueda, M. J., Llinás, V., 2012. Phytoplankton functional community structure in Argentinian Continental shelf determined by HPLC pigment signatures. Estuar. Coast. Shelf Sci. 100, 72-81.
[43] Nelson, N. B., Siegel, D. A., Carlson, C. A., Swan, C. M., 2010. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter. Geophys. Res. Lett. 37, L03610,
[44] Park, Y.-H., Fuda, J.-L., Durand, I., Garabato, S. C. N., 2008. Internal tides and vertical mixing over the Kerguelen Plateau. Deep-Sea Res. Pt. II 55, 582-593.
[45] Piola, A. R., Matano, R., 2001. Brazil and Falklad (Malvinas) currents. In: Steele, J. H., Turekian, K. K., Thorpe, S. A. (Eds.), Encyclopedia of Ocean Sciences. Acad. Press, London, 340-349,
[46] Pope, R. M., Fry, E. S., 1997. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Appl. Optics 36 (33), 8710-8723.
[47] Sheberstov, S. V., 2015. System for batch processing of oceanographic satellite data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 12 (6), 154-161, (in Russian).
[48] Stal, L. J., Albertano, P., Bergman, B., von Broeckel, K., Gallon, J. R., Hayes, P. K., Sivonen, K., Walsby, A. E., 2003. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea-responses to a changing environment. Cont. Shelf Res. 23 (17-19), 1695-1714.
[49] Stramski, D., Boss, E., Bogucki, D., Voss, K. J., 2004. The role of seawater constituents in light backscattering in the ocean. Prog. Oceanogr. (61), 27-56,
[50] Telesca, L., Pierini, J. O., Lovallo, M., Santamaría-del-Angel, E., 2018. Spatio-temporal variability in the Brazil-Malvinas Confluence Zone (BMCZ), based on spectroradiometric MODIS-AQUA chlorophyll-a observations. Oceanologia 60 (1), 76-85,
[51] Wozniak, B., Dera, J., 2007. Light Absorption in Sea Water. Springer Science, Business Media, New York, 463 pp.
[52] Wozniak, S. B., Stramski, D., 2004. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Appl. Optics 43 (17), 3489-3503.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-7bf72a2a-8b15-42e4-9357-43d9ce58d15d
DOI 10.1016/j.oceano.2018.04.003