Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Archives of Metallurgy and Materials

Tytuł artykułu

Fabrication of ZrO2-Ti Composites by Slip Casting Method

Autorzy Łada, P.  Falkowski, P.  Miazga, A.  Konopka, K.  Szafran, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Slip casting is one of the most popular shaping method in ceramic technology which allows producing a large number of elements in small period of time. This shaping technique gives a possibility to fabricate ceramic or composite materials such as ZrO2-Ti. Ti with its properties (low density, high melting point, high-temperature strength, good corrosion resistance and others) combine with ZrO2(high flexure strength, high compression resistance and very high KIC) can be considered for different applications as constructional and functional materials. For the preparation of such composite nanometric zirconium oxide powder stabilized by 3 mol% Y2O3and micrometric titanium powder were used. Water-based slurries with 35, 40, 45 and 50 vol.% solid phase content were prepared with 3, 10 and 15 vol.% addition of titanium powder. Zeta potential and pH of prepared slurries were considered. The pH changes were tested as a function of Ti content. The viscosity of the prepared slurries was measured. The sedimentation tests for selected slurries were performed. The casting rate for slurry of 35% solid phase with 10 vol.% Ti was examined. These measurements showed good stability of slurries. With the increasing of the solid phase concentration the density of the green bodies increased. However, the increase of the content of Ti powder reduced the density of green body samples. For selected samples the SEM observations was carried out. Composites produced by slip casting were characterized by a homogenous distribution of Ti particles in the ZrO2matrix.
Słowa kluczowe
EN ceramic-metal composite   titanium   zirconium oxide   slip-casting  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2016
Tom Vol. 61, iss. 2B
Strony 1095--1100
Opis fizyczny Bibliogr. 17 poz., rys., tab., wykr., wzory
autor Łada, P.
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., Warsaw, Poland,
autor Falkowski, P.
  • Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Str., Warsaw, Poland
autor Miazga, A.
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., Warsaw, Poland
autor Konopka, K.
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., Warsaw, Poland
autor Szafran, M.
  • Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Str., Warsaw, Poland
[1] K. L. Lin, C. C. Lin, Reaction between titanium and zirconia powders during sintering at 1500°C, J. Am. Ceram. Soc. 90, 2220-2225 (2007).
[2] A. Tsetsekou, C. Agrafiotis, A. Milias, Optimization of the rheological properties of alumina slurries for ceramic processing applications, Part I: Slip-casting, J. Eu. Ceram. Soc. 21, 363-373 (2001).
[3] H. Hassanin, K. Jiang, Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding, Scripta Mater. 69, 433-436 (2013).
[4] M. Gizowska, M. Szafran, Moulding ceramic materials with slip casting, Ceram. Mater. 61, 3, 173-178 (2009).
[5] K. Konopka, M. Szafran, E. Bobryk, Fabrication of Al2O3-Fe gradient composites by slip casting method, Composites 6, 57-61 (2006).
[6] Y. Li, J. Lin, J. Gao, G. Qiao, H. Wang, Fabrication of reaction- -bonded SiC ceramics by slip casting of SiC/C suspension, Mater. Sci. Eng. A483-484, 676-678 (2008).
[7] D. Huo, Y. Zheng, X. Sun, X. Li, S. Liu, Preparation of transparent Y2O3 ceramic by slip casting and vacuum sintering, J. Rare Earths 30, 1, 57-62 (2012).
[8] W. Acchar, Y. B. F. Silva, C. A. Cairo, Mechanical properties of hot-pressed ZrO2 reinforced with (W,Ti)C and Al2O3 additions, Mater. Sci. Eng. A527, 480-484 (2010).
[9] L. D. Teng, F. M. Wang, W. C. Li, Termodynamics and microstructure of Ti-ZrO2 metal-ceramic functionally graded materials, Mater. Sci. Eng. A293, 130-136 (2000).
[10] K. Yousefipour, A. Akbari, M. R. Bayati, The effect of EEMAO processing on Surface mechanical properties of the TiO2-ZrO2 nanostructured composite coatings, Ceram. Int. 39, 7809-7815 (2013).
[11] J. Zhu, A. Kamiya, T. Yamada, W. Shi, K. Naganuma, K. Mukai, Surface tension, wettability and reactivity of molten titanium in Ti/yttria-stabilized zirconia system, Mater. Sci. Eng. A327, 117-127 (2002).
[12] L. Kucharska, Reologia i fizykochemiczne podstawy procesów ceramicznych, Wydawnictwo Politechniki Wrocławskiej, Wrocław (1976).
[13] Norma branżowa, Ceramika, Metody badań, Oznaczanie szybkości nabierania czerepu, BN-86 7011-36.
[14] S. Ghosh, Z. Nowak, K. Lee, Quantitative characterization and modeling of composite microstructures by Voronoi cells, Acta Mater. 45(6), 2215-2234 (1997).
[15] M. I. Nieto, C. Baudı´n, I. Santacruz, Reaction sintering of colloidal processed mixtures of sub-micrometric, alumina and nano-titania, Ceramics International 37, 1085-1092 (2011).
[16] K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties, Nanoscale Res. Lett. 6-27 (2011).
[17] J. A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc. 83(10), 2341-59 (2000).
EN The work was done in frame of the project financed by National Center of Science (NCN), project DEC-2013/11/B/ST8/00309
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-7b6a0d79-c3dd-4eff-9edc-019f37bd2007
DOI 10.1515/amm-2016-0184