Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deposition of phosphate coatings on titanium within scaffold structure

Treść / Zawartość
Warianty tytułu
Języki publikacji
Purpose. Existing knowledge about the appearance, thickness, and chemical composition of 37 phosphate coatings on titanium inside porous structures is insufficient. Such knowledge is 38 important for the design and fabrication of porous implants. 39 Methods. Metallic scaffolds were fabricated by selective laser melting of 316L stainless steel 40 powder. Phosphate coatings were deposited on Ti sensors placed either outside the scaffolds 41 or in the holes in the scaffolds. The electrochemically-assisted cathodic deposition of 42 phosphate coatings was performed under galvanostatic conditions in an electrolyte containing 43 the calcium and phosphate ions. The phosphate deposits were microscopically investigated; 44 this included the performance of mass weight measurements and chemical analyses of the content of Ca2+ and PO4 2‒ 45 ions after the dissolution of deposits. 46 Results. The thicknesses of the calcium phosphate coatings were about 140 and 200 nm for 47 isolated titanium sensors and 170 and 300 nm for titanium sensors placed inside pores. 48 Deposition of calcium phosphate occurred inside the pores up to 150 mm below the scaffold 49 surface. The deposits were rich in Ca, with a Ca/P ratio ranging between 2 and 2.5. 50 Conclusions. Calcium phosphate coatings can be successfully deposited on a Ti surface 51 inside a model scaffold. An increase in cathodic current results in an increase in coating 52 thickness. Any decrease in the cathodic current inside the porous structure is slight. The 53 calcium phosphate inside the pores has a much higher Ca/P ratio than that of stoichiometric 54 HAp, likely due to a gradual increase in Ca fraction with distance from the surface.
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
  • Gdansk University of Technology, Gdansk, Poland
  • Technische Universitaet Dresden, Dresden, Detschland
  • Gdansk University of Technology, Gdansk, Poland
  • Technische Universitaet Dresden, Dresden, Detschland
  • [1] Albayrak O., El-Atwani O., Altintas S., Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of a titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition, Surf Coat Technol, 2008, 202(11):2482– 336 2487, DOI: 10.1016/j.surfcoat.2007.09.031
  • [2] Basalah A., Shanjani Y., Esmaeili S., Toyserkani E., Characterizations of additive manufactured porous titanium implants, J Biomed Mater Res B Appl Biomater, 2012, 100(7): 1970-1979, DOI: 10.1002/jbm.b.32764.
  • [3] Bracci B., Panzavolta S., Bigi A., A new simplified calcifying solution to synthesize calcium phosphate coatings, Surf Coat Techn, 2013, 232:13-21, DOI: 10.1016/j.surfcoat.2013.04.046.
  • [4] Chen X.-B., Li Y.-C., Du Plessis J., Hodgson P. D., Wen C., Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications, Acta Biomater, 2009, 5(5):1808–1820, DOI: 10.1016/j.actbio.2009.01.015.
  • [5] Dewidar M.M., Khalil K.A., Lim J.K., Processing and mechanical properties of porous 316L stainless steel for biomedical applications, Trans Nonferrous Met So. China, 2007, 17:468-473.
  • [6] Doroshkin S.V., Calcium orthophosphate deposits: Preparation, properties and biomedical applications, Mater Sci Eng C Mater Biol Appl, 2015, 55(10): 272-326. DOI: 10.1016/j.msec.2015.05.033
  • [7] Głogocka D., Noculak A., Pucińska J., Jopek W., Podbielska H., Langner M., Przybyło M., Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy, Acta Bioeng Biomech, 2015, 17(3):33-40, DOI: 10.5277/ABB-00138-2014-03.
  • [8] Gu D., Y. Shen, Processing conditions and microstructural features of porous 316L stainless steel components by DMLS, Appl Surf Sci, 2008, 255(5):1880-1887, DOI: 10.1016/j.apsusc.2008.06.118.
  • [9] Hernández - Montelongo J., Muñoz – Noval A., V. Torres – Costa V., Martín – Palma R.J., Manso – Silvan M., Cyclic Calcium Phosphate Electrodeposition on Porous Silicon. 1 Int J Electrochem Sci, 2012, 7L 1840-1851.
  • [10] Jansen J.A., Wolke J.G.C., Swann S., Van Der Waerden J.P.C.M., De Groof K., Application of magnetron sputtering for producing ceramic coatings on implant material, Clin Oral Impl. Res, 1993, 4(1):28-34, DOI: 10.1034/j.1600-0501.1993.040104.x.
  • [11] Kim M.-S., Jung U.-W., Kim S., Lee J.-S., Lee I.-S., Choi S.-H., Bone apposition on implants coated with calcium phosphate by ion beam assisted deposition in oversized drilled sockets: a histologic and histometric analysis in dogs, J Periodontal Implant Sci, 2013, 43(1):18-23, DOI: 10.5051/jpis.2013.43.1.18.
  • [12] Koch C.F., Johnson S., Kumar D., Jelinek M., Chrisey D.B., Doraiswamy A., Jin C., Narayan R.J., Mihailescu I.N., Pulsed laser deposition of hydroxyapatite thin films, Mater Sci Eng C, 2007, 27(3):484–494, DOI: 10.1016/j.msec.2006.05.025.
  • [13] Kodama A., Bauer S., Komatsu A., Asoh H., Ono S., Schmuki P., Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite, Acta Biomater, 2009, 5(6):2322-2330, DOI: 375 10.1016/j.actbio.2009.02.032.
  • [14] Li J.P., Habibovic P., van den Doel M., Wilson C.E., de Wijn J.R., van Blitterswijk C.A., de Groot K., Bone ingrowth in porous titanium implants produced by 3D fiber deposition, Biomaterials, 2007, 28:2810–2820, DOI: 10.1016/j.biomaterials.2007.02.020.
  • [15] Lin W.S., Starr T.L., Harris B.T., Zandinejad A., Morton D., Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters, Int J Oral 382 Maxillofac Implants, 2013, 28(6):1490-1495, DOI: 10.11607/jomi.3164.
  • [16] Lindahl C., Xia W., Engqvist H., Snis A., Lausmaa J., Palmquist A., Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants, Appl Surf Sci, 2015, 353:40–47, DOI: 10.1016/j.apsusc.2015.06.056.
  • [17] Mansur M.R., Wang J., Berndt C.C., Microstructure, composition and hardness of laser- assisted hydroxyapatite and Ti-6Al-4V composite coatings, Surf Coat Techn, 2013, 232: 482-488, DOI: 10.1016/j.surfcoat.2013.06.006.
  • [18] Mona Goudarzi M., Batmanghelich F., Afshar A., Dolati A., Mortazavi G., Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: corrosion and sintering temperature, Appl Surf Sci, 2014, 301:250–257, DOI: 10.1016/j.apsusc.2014.02.055.
  • [19] Nelea V., Morosanu C., Iliescu M., Mihailescu I.N., Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering, Surf Coat Techn, 2003, 173(2-3):315–322, DOI: 10.1016/S0257-8972(03)00729-1.
  • [20] Rainer A., Giannitelli S.M., Accoto D., De Porcellinis S., Guglielmelli E., Trombetta M., Load-adaptive scaffold architecture: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties, Ann Biomed Eng, 2012, 40(4):966-975, DOI: 10.1007/s10439-011-0465-4.
  • [21] Ribeiro A.A., Balestra R.M., Rocha M.N., Peripolli S.B., Andrade M.C., Pereira L.C., Oliveira M.V., Dense and porous titanium substrates with a biomimetic calcium phosphate coating, Appl Surf Sci, 2013, 265:250-256, DOI: 10.1016/j.apsusc.2012.10.189.
  • [22] Roguska A., Pisarek M., Andrzejczuk M., Dolata M., Lewandowska M., Janik-Czachor M., Characterization of a calcium phosphate–TiO2 nanotube composite layer for biomedical applications, Mater Sci Eng C, 2011, 39(5):906–914, DOI: 407 10.1016/j.msec.2011.02.009.
  • [23] Rößler S., Sewing A., Stolzel M., Born R., Scharnweber D., Dard M., Worch H., Electrochemically assisted deposition of thin calcium phosphate coatings at near- physiological pH and temperature, J Biomed Mater Res A, 2003, 64(4): 655-636, DOI: 411 10.1002/jbm.a.10330.
  • [24] Rumian Ł., Reczyńska K., Wrona M., Tiainen H., Haugen H. J., Pamuła E., The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects, Acta Bioeng Biomech, 2015, 17(1):3-9, DOI: 10.5277/ABB-00129-2014-02.
  • [25] Ryan G., Pandit A., Apatsidis D.P., Fabrication methods of porous metals for use in orthopedic applications, Biomaterials, 2006, 27(13):2651–2670, DOI: 10.1016/j.biomaterials.2005.12.002.
  • [26] Sobieszczyk S.: Development of bioactive porous implants based on titanium alloy. Gdansk Univ. Techn. Edit. Off., 2013. ISBN 83-7348-473-6.
  • [27] Wang L.-N., Luo J.-L., Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method, Mater Sci Eng C, 2011, 31(4):748-754, DOI: 10.1016/j.msec.2010.10.008.
  • [8] Xie F., He X., Cao S., Qu X., Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering, J Mater Proc Techn, 2013, 213(6):838– 843, DOI: 10.1016/j.jmatprotec.2012.12.014.
  • [29] Zhang Q., Leng Y., Xin R., A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium, Biomaterials, 2005, 26(16): 2857–2865, DOI: 10.1016/j.biomaterials.2004.08.016.
  • [30] Zieliński A., Antoniuk P., Krzysztofowicz K., Nanotubular oxide layers and hydroxyapatite coatings on ‘Ti–13Zr–13Nb’ alloy, Surf Eng, 2014, 30(9): 643-649, DOI: 10.1179/1743294414Y.0000000302.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.