Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental studies of leading edge vortex control of delta wing micro aerial vehicle

Treść / Zawartość
Warianty tytułu
Języki publikacji
It is known, that small disturbances generated by the micro actuators can alter large-scale vortex structures, and consequently, generate appreciable aerodynamic moments along all three axes for flight control. In the current study, we explored the possibility of independently controlling these moments. We perform analytical simulations showing optimal position of LEX generators, and water tunnel measurements showing effectiveness of MEX generators as MAV control devices. We applied array of actuators located on either the forward or the rear half section of the leading edge. Both one- and two-sided control configurations have also been investigated. Experimental results showed that asymmetric vortex pairs were formed, which leads to the generation of significant torques in all three axes. The article presents typical vortical flow over a delta wing, water tunnel at Wroclaw University of Technology, experimental setup and procedures, static test results on water tunnel testing including normal forces, pitching and yawing moments, maximum values of rolling, pitching, and yawing moment coefficients, effectiveness of pitching and yawing control.
  • Air Force Institute of Technology Ks. Boleslawa Street 6, Warsaw, 01-494, Poland
  • Air Force Institute of Technology Ks. Boleslawa Street 6, Warsaw, 01-494, Poland
  • Wroclaw University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • [1] Ericsson, L. E., Reding, J. P., Approximate Nonlinear Slender Wing Aerodynamics, AIAA Journal of Aircraft, Vol. 14, No. 12, pp. 1197-1204, 1977.
  • [2] Payne, F. M., Ng, T. T., Nelson, R. C., Visualization and Wake Surveys of Vortical Flow over a Delta Wing, AIAA Journal, Vol. 26, No. 2, pp. 137-143, 1988.
  • [3] Fink, P. T., Taylor, J., Some Early Experiments on Vortex Separation, Aeronautical Research Council, R & M., No. 3489, 1967.
  • [4] Lambourne, N. C., Bryer, D. W., The Bursting of Leading-Edge Vortices-Some Observations and Discussion of the Phenomenon, Aero. Res. Council, Reports and Memoranda, No. 3282, pp. 1-37, 1961.
  • [5] Lee, M., Ho, C. M., Lift force of delta wings, Applied Mech. Rev, Vol. 43, No. 9, pp. 209-221, 1990.
  • [6] Peckham, D. H., Low-speed Wind-Tunnel Tests on a Series of Uncambered Slender Pointed Wings with Sharp Edges, Aeronautical Research Council, R. & M. No. 3186, 1958.
  • [7] Earnshaw, P. B., Lawford, J. A., Low-Speed Wind-Tunnel Experiments on a Series of Sharp Leading-edged Delta Wings, Aeronautical Research Council, R. & M., No. 3424, 1964.
  • [8] Hall, M. G., Vortex Breakdown, Annual Review of Fluid Mechanics, Vol. 4, pp. 195-218, 1972.
  • [9] Polhamus, E. C., Predictions of Vortex-Lift Characteristics by a Leading-Edge Suction Analogy, AIAA Journal of Aircraft, Vol. 8, No. 4, pp. 193-199, 1971.
  • [10] Bradley, R. G., Wray W. O., A Conceptual Study of Leading-Edge-Vortex Enhancement by Blowing, AIAA Journal Aircraft, Vol. 11, No. 1, pp. 33-38, 1974.
  • [11] Wood, N. J., Roberts, L., The Control of Vortical Lift on Delta Wings by Tangential Leading Edge Blowing, AIAA, paper No. 87-0158, 1987.
  • [12] Campbell, J. F., Augmentation of Vortex Lift by Spanwise Blowing, AIAA Journal of Aircraft, Vol. 13, No. 9, pp. 727-732, 1976.
  • [13] Greenwell, D. I., Wood, N. J., Roll Moment Characteristics of Asymmetric Tangential Leading-Edge Blowing on a Delta Wing, AIAA Journal of Aircraft, Vol. 31, No. 1, pp. 161-168, 1994.
  • [14] Johari, H., Olinger, D. J., Fitzpatrick, K. C., Delta Wing Vortex Control via Recessed Angled Spanwise Blowing, AIAA Journal of Aircraft, Vol. 32, No. 4, pp. 804-810, 1995.
  • [15] Gu, W., Robinson, O., Rockwell, D., Control of Vortices on a Delta Wing by Leading-Edge Injection, AIAA Journal, Vol. 31, No. 7, pp. 1177-1186, 1993.
  • [16] Miyaji, K., Fujii, K., Karashima, K., Enhancement of the Leading-Edge Separation Vortices by Trailing-Edge Lateral Blowing, AIAA Journal, Vol. 34, No. 9, pp. 1943-1945, 1996.
  • [17] Meyer, J., Seginer, A., Pulsating Spanwise Blowing on a Fighter Aircraft, AIAA-92-4359-CP, pp. 188-197, 1992.
  • [18] Gad-el-Hak, M., Blackwelder, R. F., Control of the Discrete Vortices from a Delta Wing, AIAA Journal, Vol. 25, pp. 1024-1049, 1987.
  • [19] Celik, Z. Z., Roberts, L., Aircraft Control at High-Alpha by Tangential Blowing, AIAA Paper 92-0021, Jan. 1992.
  • [20] Greenwell, D. I., Wood, N. J., Static Roll Moment Characteristics of Asymmetric Tangential Leading Edge Blowing on a Delta Wing at High Angles of Attack, AIAA 93-0052, 1993.
  • [21] Fitzpatrick, K., Johari, H., Olinger, D., A Visual Study of Recessed Angled Spanwise Blowing Method on a Delta Wing, AIAA Paper 93-3246, July 1993.
  • [22] Malcom, G. N., Skow, A. M., Flow Visualization Study of Vortex Manipulation of Fighter Configurations at High Angles of Attack, AGARD CP-413, 1986.
  • [23] Alexander, M., Meyn, L. A., Wind Tunnel Results of Pneumatic Forebody Vortex Control Using Rectangular Slots on a Chined Forebody, AIAA Paper 94-1854, June 1994.
  • [24] Hummel, D., Zur Umstromung sharfkantiger shlanker Deltaflugel bei grossen Anstellwinkeln, Z. Flugwiss, Vol. 15, No. 10, pp. 376-385, 1967.
  • [25] Ross, F. W., Kegelman, J. T., Recent Explorations of Leading Edge Vortex Flowfields, NASA CP 3149, Vol. 1, Pt. 1, pp. 157-172, 1990.
  • [26] Shih, C., Ding. Z., Trailing-Edge Jet Control of Leading-Edge Vortices of a Delta Wing, AIAA Journal, Vol. 34, No. 7, pp. 1447-1457, 1996.
  • [27] Helin, H. E., Watry, C. W., Effects of Trailing-Edge Jet Entrainment on Delta Wing Vortices, AIAA Journal, Vol. 32, No. 4, pp. 802-804, 1994.
  • [28] Wahls, R. A., Vess, R. J., Moskovitz, C. A., Experimental Investigation of Apex Fence Flaps on Delta Wings, AIAA Journal of Aircraft, Vol. 23, No. 10, pp. 789-797, 1986.
  • [29] Marchman, J. F., Aerodynamics of Inverted Leading-Edge Flaps on Delta Wings, AIAA Journal of Aircraft, Vol. 18, No. 12, pp.1051-1056, 1981.
  • [30] Rao, D. M. Buter, T. A., Experimental and Computational Studies of a Delta Wing Apex-Flap, AIAA paper no. 83-1815, 1983.
  • [31] Rao, D. M., Johnson, T. D. Jr., Investigation of Delta Wing Leading-Edge Devices, AIAA Journal, Vol. 18, No. 3, pp. 161-167, 1981.
  • [32] Spedding, G. R., Maxworthy, T., Rignot, E., Unsteady Vortex Flows over Delta Wings, Proc. 2nd AFOSR Workshop on Unsteady and Separated Flows, Colorado 1987.
  • [33] Marchman, J. F., Effect of heating on Leading Edge Vortices in Subsonic Flow, AIAA Journal of Aircraft, Vol. 12, No. 2, pp. 121-123, 1975.
  • [34] Lee, G. B., Control of a Delta-Wing Aircraft by Using Micromachined Sensors and Actuators, Ph.D. Thesis, University of California, Los Angeles 1998.
  • [35] Lee, G. B., Jiang, F., Tsao, T., Tai, Y. C., Ho, C. M., Macro Aerodynamics Devices Controlled by Micro Systems, IEEE Aerospace Conference, Snowmass, CO, Feb. 1-8, 1997.
  • [36] Ho, C. M., Tai, Y. C., Micro-electro-mechanical-systems (MEMS) and Fluid Flows, Annual Review of Fluid Mechanics, Vol. 30, pp. 579-612, 1998.
  • [37] Liu, C., Tsao, T., Tai, Y. C., Ho, C. M., Surface Micromachined Magnetic Actuators, An Investigation of Micro Structures, Sensors, Actuators, Machines, and Systems, Proc. 7th Ann. Int. Workshop MEMS, Oiso, Japan, IEEE, pp. 57-62, New York 1994.
  • [38] Lee, G. B., Ho, C. M., Jiang, F., Liu, C., Tsao, T., Tai, Y. C., Distributed Flow Control by MEMS, ASME International Mechanical Engineering Congress & Exposition, Atlanta, Georgia, USA 1996.
  • [39] Gwo-Bin Lee, Yu-Chong Tai, Fukang Jiang, Charles Grosjean, Chang Liu, and Chih-Ming Ho, Robust Vortex Control of a Delta Wing by Distributed Microelectromechanical-Systems Actuators, AIAA Journal of Aircraft, Vol. 37, No. 4, 2000.
  • [40]
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.