Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Selective-Decode and Forward Relaying Protocol over κ-µ Fading Channel Distribution

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this work, the performance of selective-decode and forward (S-DF) relay systems over κ-µ fading channel conditions is examined in terms of probability density function (PDF), system model and cumulative distribution function (CDF) of the κ-µ distributed envelope, signal-to-noise ratio and the techniques used to generate samples that rely on κ-µ distribution. Specifically, we consider a case where the sourceto-relay, relay-to-destination and source-to-destination link is subject to independent and identically distributed κ-µ fading. From the simulation results, the enhancement in the symbol error rate (SER) with a stronger line of sight (LOS) component is observed. This shows that S-DF relaying systems may perform well even in non-fading or LOS conditions. Monte Carlo simulations are conducted for various fading parameter values and the outcomes turn out to be a close match for theoretical results, which validates the derivations made.
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
  • ECE Department, MITS Madanapalle, Madanapalle-517325, AP, India
  • ECE Department, National Institute of Technology, Patna, Patna-800005, India
  • ECE Department, National Institute of Technology, Patna, Patna-800005, India
  • [1] X. Xia, K. Xu, Y. Wang, and Y. Xu, „A 5G-enabling technology: benets, feasibility, and limitations of in-band full-duplex mMIMO", IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 81-90, 2018 (doi: 10.1109/MVT.2018.2792198).
  • [2] S. Li, L. Da, and S. Zhao, „5G Internet of Things: A survey", J. of Indust. Inform. Integr., vol. 10, pp. 1-9, 2018 (doi: 10.1016/j.jii.2018.01.005).
  • [3] I. Parvez, A. Rahmati, I. Guvenc, A. Sarwat, and A. Dai, „A survey on low latency towards 5G: RAN, core network and caching solutions", IEEE Commun. Surv. & Tutor., vol. 20, no. 4, pp. 3098-3130, 2018 (doi: 10.1109/COMST.2018.2841349).
  • [4] R. Shankar, V. Sachan, G. Kumar, and R. Mishra, „An investigation of two-phase multi-relay S-DF cooperative wireless network over time-variant fading channels with incorrect CSI", Procedia Comp. Sci. J., vol. 125, pp. 871-879, 2018 (doi: 10.1016/j.procs.2017.12.111).
  • [5] V. Sachan, R. Shankar, and R. Mishra, „Selective decode-forward cooperative communication over Nakagami-m fading channel with channel estimation error", J. of Telecommun., Electron. and Com. Engin. (JTEC), vol. 9, no. 2-6, pp. 85-90, 2017 [Online]. Available:
  • [6] R. Shankar, I. Kumar, K. Pandey, and R. Mishra, „Pairwise error probability analysis and optimal power allocation for selective decode-forward protocol over Nakagami-m fading channels", in Proc. Int. Conf. on Algor., Methodol., Models and Appl. in Emerg. Technol. ICAMMAET 2017, Chennai, India, 2017 (doi: 10.1109/ICAMMAET.2017.8186700).
  • [7] Fa-Long Luo, „Full duplex device-to-device cooperative communication", U.S. Patent Application No. 15/701,007, 2019 [Online]. Available:
  • [8] M. Weyrich, J. Schmidt, and C. Ebert, „Machine-to-machine communication", IEEE Software, vol. 31, no. 4, pp. 19-23, 2014 (doi: 10.1109/MS.2014.87).
  • [9] A. Arash, Q. Wang and Mancuso V., „A survey on device-to-device communication in cellular networks", IEEE Commun. Surv. & Tutor., vol. 16, no. 4, pp. 1801-1819, 2014 (doi: 10.1109/COMST.2014.2319555).
  • [10] M. Tehrani, M. Uysal, and H. Yanikomeroglu, „Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions", IEEE Commun. Mag., vol. 52, no. 5, pp. 86-92, 2014 (doi.10.1109/MCOM.2014.6815897).
  • [11] A. Amr, J. Seoane, M. Galeev, K. Komoravolu, Z. Wang, and G. Reichard, „Method and apparatus for increasing performance of communication links of cooperative communication nodes", U.S. Patent Application 10/039,061, led July 31, 2018 [Online]. Available:
  • [12] S. Yu, Y. Ahn, S. Choi, Y. Moon, and H. Song, „Ecient relay selection scheme utilizing superposition modulation in cooperative communication", Annals of Telecommun., vol. 1, pp. 1-6, 2019 (doi: 10.1007/s12243-019-00726-6).
  • [13] R. Boluda-Ruiz, A. Garc a-Zambrana, C. Castillo-V azquez, B. Castillo-Vazquez, and S. Hranilovic, „Amplify-and-forward strategy using MRC reception over FSO channels with pointing errors", J. of Opt. Commun. and Network., vol. 10, no. 5, pp. 545-552, 2018 (doi: 10.1364/JOCN.10.000545).
  • [14] M. Dabiri and S. Sadough, „Performance analysis of all-optical amplify and forward relaying over log-normal FSO channels", J. of Opt. Commun. and Network., vol. 10, no. 2, pp. 79-89, 2018 (doi: 10.1364/JOCN.10.000079).
  • [15] H. Shaoling and W. Chen, „Successive amplify-and-forward relaying with network interference cancellation", IEEE Trans. on Wirel. Commun., vol. 17, no. 10, pp. 6871-6886, 2018 (doi: 10.1109/TWC.2018.2864968).
  • [16] L. Hongwu, Z. Ding, K. Kim, K. Kwak, and H. Poor, „Decode-and-forward relaying for cooperative NOMA systems with direct links", IEEE Trans. on Wirel. Commun., vol. 17, no. 12, pp. 8077-8093, 2018 (doi: 10.1109/TWC.2018.2873999).
  • [17] L. Xiangli, Z. Li, and C. Wang, „Secure decode-and-forward relay SWIPT systems with power splitting schemes", IEEE Trans. on Veh. Technol., vol. 67, no. 8, pp. 7341-7354, 2018 (doi: 10.1109/TVT.2018.2833446).
  • [18] H. Asif, R. Noor, K. Yau, I. Ahmedy, and S. Anjum, „A survey on simultaneous wireless information and power transfer with cooperative relay and future challenges", IEEE Access, vol. 7, pp. 19166-19198, 2019 (doi: 10.1109/ACCESS.2019.2895645).
  • [19] J. Ryu and J. Lee, „Trust degree-based MISO cooperative communications with two relay nodes", Wirel. Commun. and Mob. Comput., vol. 2019, Article ID 7927358, pp. 1-13, 2019 (doi: 10.1155/2019/7927358).
  • [20] C. In, H. Kim, and W. Choi, „Achievable rate-energy region in two-way decode-and-forward energy harvesting relay systems", IEEE Trans. on Commun., vol. 67, no. 7, pp. 3923-3935, 2019 (doi: 10.1109/TCOMM.2019.2901783).
  • [21] Y. Ye, Y. Li, L. Shi, R. Hu, and H. Zhang, „Improved hybrid relaying protocol for DF relaying in the presence of a direct link", IEEE Wirel. Commun. Lett., vol. 8, no. 1, pp. 173-176, 2019 (doi: 10.1109/LWC.2018.2865476).
  • [22] B. Nguyen, T. Hoang, and P. Tran, „Performance analysis of full-duplex decode-and-forward relay system with energy harvesting over Nakagami-m fading channels", AEU - Int. J. of Electron. and Commun., vol. 98, pp. 114-122, 2019 (doi: 10.1016/j.aeue.2018.11.002).
  • [23] N. T. Nguyen, M. Tran, L. T. Nguyen, D. Ha, and M. Voznak, „Performance analysis of a user selection protocol in cooperative networks with power splitting protocol-based energy harvesting over Nakagami-m/Rayleigh channels", Electronics, vol. 8, no. 4, pp. 448, 2019 (doi: 10.3390/electronics8040448).
  • [24] C. Cai, Y. Wendong, and C. Yueming, „Outage performance of OFDM-based selective decode-and forward cooperative networks over Weibull fading channels", High Technol. Lett., vol. 17, no. 3, pp. 285-289, 2011 (doi: 10.3772/j.issn.1006-6748.2011.03.010).
  • [25] R. Shankar, K. Pandey, A. Kumari, V. Sachan, and K. R. Mishra, „C(0) protocol based cooperative wireless communication over Nakagami-m fading channels: PEP and SER analysis at optimal power", in Proc. IEEE 7th Ann. Comput. and Commun. Worksh. and Conf. CCWC 2017, Las Vegas, NV, USA, 2017, pp. 1-7 (doi: 10.1109/CCWC.2017.7868399).
  • [26] R. Shankar, I. Kumar, and K. R. Mishra, „Pairwise error probability analysis of dual hop relaying network over time selective Nakagami-m fading channel with imperfect CSI and node mobility", Traitement du Signal, vol. 36, no. 3, pp. 281-295, 2019 (doi: 10.18280/ts.360312).
  • [27] R. Shaik and K. Rama, „Performance analysis of multi-hop cooperative system under k -m shadowed fading channels", in Proc. Int. Conf. on Commun. and Sig. Process. ICCSP 2019, Chennai, India, 2019, pp. 0587-0591, 2019 (doi: 10.1109/ICCSP.2019.8698074).
  • [28] H. Salameh, L. Mahdawi, A. Musa, and T. Hailat, „End-to-end performance analysis with decode-and-forward relays in multihop wireless systems over a-h-m fading channels", IEEE Syst. J., vol. 1, no. 1, pp. 1-9 (doi: 10.1109/JSYST.2019.2891125).
  • [29] P. Kumar and K. Dhaka, „Performance analysis of a decode-and-forward relay system in k -m and h-m fading channels", IEEE Trans. on Veh. Technol., vol. 65, no. 4, pp. 2768-2775, 2016 (doi: 10.1109/TVT.2015.2418211).
  • [30] J. Zhang, X. Li, I. Ansari, Y. Liu, and K. Qaraqe, „Performance analysis of dual-hop DF satellite relaying over k -m shadowed fading channels", in Proc. IEEE Wire. Commun. and Network. Conf. WCNC 2017, San Francisco, CA, USA, 2017, pp. 1-6 (doi: 10.1109/WCNC.2017.7925541).
  • [31] A. Kodide, „Performance analysis of a cooperative communication network over k -m shadowed fading for different relaying protocols", Master Thesis, Faculty of Engineering, Department of Applied Signal Processing, Blekinge Institute of Technology, Karlskrona, Sweden, 2015 [Online]. Available:
  • [32] L. S. Cotton, „Human body shadowing in cellular device-to-device communications: channel modeling using the shadowed k -m fading model", IEEE J. on Selec. Areas in Commun., vol. 33, no. 1, pp. 111-119, 2015 (doi: 10.1109/JSAC.2014.2369613).
  • [33] W. Cheng, H. Hung, and H. Lu,”A novel two-stage fusion detector based on maximum ratio combining and max-log rules", in Proc. Of the 2nd High Perform. Comp. and Cluster Technol. Conf. HPCCT 2018, Beijing, China, 2018, pp. 116-120 (doi: 10.1145/3234664.3234673).
  • [34] R. Shankar and K. R. Mishra, „Outage probability analysis of selective-decode and forward cooperative wireless network over time varying fading channels with node mobility and imperfect CSI condition", in Proc. TENCON 2018 - 2018 IEEE Region 10 Conf., Jeju, South Korea, 2018, pp. 0508-0513 (doi: 10.1109/TENCON.2018.8650275).
  • [35] V. Sachan, I. Kumar, R. Shankar, and R. Mishra, „Analysis of transmit antenna selection based selective decode forward cooperative communication protocol", Traitement du Signal, vol. 35, no. 1, pp. 47-60, 2018 (doi: 10.3166/ts.35.47-60).
  • [36] M. D. Yacoub, „The k -m distribution: A general fading distribution", in Proc. IEEE 54th Veh. Technol. Conf. VTC Fall 2001, Atlantic City, NJ, USA, 2001, vol. 3, no. 1, pp. 1427-1431 (doi: 10.1109/VTC.2001.956432).
  • [37] M. D. Yacoub, „The a-m distribution: A general fading distribution", in Proc. 13th IEEE Int. Symp. on Pers., Indoor and Mob. Radio Commun., Pavilhao Altantico, Lisbon, Portugal, 2002, vol. 2, pp. 629-633 (doi: 10.1109/PIMRC.2002.1047298).
  • [38] M. D. Yacoub, „The a-m distribution: A physical fading model for the Stacy distribution", IEEE Trans. on Veh. Technol., vol. 56, pp. 27-34, 2007 (doi: 10.1109/TVT.2006.883753).
  • [39] M. D. Yacoub, „The k -m distribution and the h-m distribution", IEEE Antenn. and Propag. Mag., vol. 49, pp. 68-81, 2007 (doi: 10.1109/MAP.2007.370983).
  • [40] M. K. Simon and M.-S. Alouini, Digital Communication Over Fading Channels: A Unied Approach to Performance Analysis. Wiley, (ISBN: 9780471317791).
  • [41] K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative Communications and Networking. Cambridge University Press, 2008 (ISBN: 9780511754524, doi: 10.1017/CBO9780511754524).
  • [42] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 8th ed. Academic Press, 2014 (ISBN 978-0-12-384933-5, (doi: 10.1016/C2010-0-64839-5).
  • [43] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. Academic Press, 2007 (ISBN: 9780123736376).
  • [44] R. Shankar, I. Kumar, and K. R. Mishra, „Pairwise error probability analysis of dual hop relaying network over time selective Nakagami-m fading channel with imperfect CSI and node mobility", Traitement du Signal, vol. 36, no. 3, pp. 281-295, 2019 (doi: 10.18280/ts.360312).
  • [45] H. M. Srivastava, A. C etinkaya, and I. Onur Kiymaz, „A certain generalized Pochhammer symbol and its applications to hypergeometric functions", Appl. Mathem. and Comput., vol. 226, pp. 484-491, 2014 (doi: 10.1016/j.amc.2013.10.032).
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.